Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 763-776.DOI: 10.1007/s40195-024-01677-1
Fanchao Meng1, Rui Zhang1,2, Shuai Wang1, Fengbo Sun1, Run Chen1, Lujun Huang1,3(), Lin Geng1,3
Received:
2023-10-24
Revised:
2023-12-22
Accepted:
2024-01-14
Online:
2024-05-10
Published:
2024-06-14
Contact:
Lujun Huang, huanglujun@hit.edu.cn
Fanchao Meng, Rui Zhang, Shuai Wang, Fengbo Sun, Run Chen, Lujun Huang, Lin Geng. Fatigue Crack Initiation and Propagation Dominated by Crystallographic Factors in TiB/near α-Ti Composite[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 763-776.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Schematic of the preparation processing route and the corresponding microstructure of the TiB/Ti-6.5Al-2Zr-1Mo-1V-0.3Si composite, b XRD pattern of the as-forged composite
Fig. 2 Schematic of fatigue specimen and load curve: a orientation of specimens in forge piece, b fatigue test specimen, c fatigue load curve with R ratio of 0.1
Fig. 3 BSE images and phase volume fraction of the as-forged TiB/Ti-6.5Al-2Zr-1Mo--1V-0.3Si composite: a microstructure captured from Y-Z plane, b volume fraction of α-Ti, β-Ti and TiB corresponding to the microstructure in a, c the silicide precipitated along the α/β interface, d a small amount of transformed β was retained in the matrix
Fig. 4 TEM characterizations of the as-forged TiB/Ti–6.5Al–2Zr–1Mo–1 V–0.3Si composite: a bright-field image showing (TiZr)5Si3 and β phase, b HRTEM image corresponding to a rectangular region in a, c SAED pattern of the rectangular region in a, ${\text{[000}\stackrel{\mathrm{-}}{1}\text{]}}_{{{\text{(TiZr})}_{5}\text{(Si})}_{3}}$//[$\stackrel{\mathrm{-}}{1}$ 11]β
Fig. 6 Typical fracture morphologies of the specimen at different stress levels: a 900 MPa, b 800 MPa, c 700 MPa, d 650 MPa, e 600 MPa, f high-magnification images of the rectangular regions in e. The bottom left of images shows the high-magnification morphology of the rectangular regions
Fig. 7 Fatigue fracture surfaces of the as-forged TiB/Ti-6.5Al-2Zr-1Mo-1 V-0.3Si composite with Nf = 5,236,326 cycles at maximum stress of 600 MPa: a TiB in crack-initiation facet corresponding to the rectangular regions in Fig. 6f; b TiB in crack-propagation facet; c fatigue striation through the TiB; d fatigue striation morphology through the silicides; e and f EDS mapping of Zr and Si elements corresponding to d
Fig. 8 Crystallographic orientation of crack-initiation grain and neighboring grains in the shortest lifetime specimen: a an overview of the crack-initiation region located in the convergence of radial ridges, b an illustration of cross section plane sectioning along the yellow dashed line in b, c the superimposed image of fractography and IPF map, d the IPF of F1 and F2 grains superimposed basal Schmid factor along the loading direction, e the IPF of F1 and F2 grains corresponding to the facet normal, f the IPF of crack-initiation grain and neighboring grains along the loading axis
Fig. 9 Crystallography of the crack-initiation site and neighboring grains in the longest lifetime specimen: a schematic of the sectioning plane across the crack-initiation facet and propagation region, b the composite micrographs showing the IPF map of the facet and neighboring grains, c the IPF of F3 grain showing crystallographic orientation of facet relative to the loading axis and the basal Schmid factor, d the IPF of F3 grain corresponding to the facet normal
Fig. 10 SEM and EBSD analysis of the F4 grain at the crack propagating region: a the composite images of the IPF map and the fracture surface, b the facet surface of F4 grain, c the IPF of F4 grain superimposed basal slip Schmid factor along the loading direction, d the IPF of F4 grain along the facet normal, e GND density of basal <a> slip, f GND density of prismatic <a> slip
Fig. 11 IPF of the crack-initiation site and neighboring grains of the longest lifetime specimen with Nf = 5,236,326 cycles at maximum stress of 600 MPa
Fig. 12 Identification of fatigue crack initiation after 20,000 cycles: a an overview SEM image of fatigue crack path, b IPF map corresponding to a, c high-magnification image of the region I in a, d high-magnification image of the region II in a, e high-magnification image of the region III in a
Grain | Slip plane | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
SF | (0001) | 0.46 | 0.49 | 0.17 | 0.49 | 0.17 | 0.37 | 0.47 | 0.37 | 0.49 | 0.38 |
(0 | 0.12 | 0.22 | 0.48 | 0.22 | 0.48 | 0.09 | 0.01 | 0.03 | 0.21 | 0.04 | |
( | 0.22 | 0.19 | 0.18 | 0.20 | 0.17 | 0.04 | 0.30 | 0.09 | 0.21 | 0.10 | |
(10 | 0.34 | 0.03 | 0.30 | 0.02 | 0.31 | 0.05 | 0.29 | 0.06 | 0.03 | 0.06 |
Table 1 Schmid factors of crack propagation analysis of Fig. 13
Grain | Slip plane | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
SF | (0001) | 0.46 | 0.49 | 0.17 | 0.49 | 0.17 | 0.37 | 0.47 | 0.37 | 0.49 | 0.38 |
(0 | 0.12 | 0.22 | 0.48 | 0.22 | 0.48 | 0.09 | 0.01 | 0.03 | 0.21 | 0.04 | |
( | 0.22 | 0.19 | 0.18 | 0.20 | 0.17 | 0.04 | 0.30 | 0.09 | 0.21 | 0.10 | |
(10 | 0.34 | 0.03 | 0.30 | 0.02 | 0.31 | 0.05 | 0.29 | 0.06 | 0.03 | 0.06 |
Fig. 14 Orientation identification of fatigue initiation cracks and the fractured TiBw: a-e showing the fatigue cracks adjoining the TiBw, f pole figure of fractured TiBw
[1] | L. Huang, Q. An, L. Geng, S. Wang, S. Jiang, X. Cui, R. Zhang, F. Sun, Y. Jiao, X. Chen, C. Wang, Adv. Mater. 33, 2000688 (2021) |
[2] |
Y. Jiao, L.J. Huang, S.L. Wei, H.X. Peng, Q. An, S. Jiang, L. Geng, J. Mater. Sci. Technol. 35, 1532 (2019)
DOI |
[3] | Z.S. Ma, S. Wang, L.J. Huang, Q. An, R. Zhang, W.Q. Liu, F.B. Sun, R. Chen, L. Geng, Compos. Pt. B Eng. 254, 110583 (2023) |
[4] |
Q. An, L.J. Huang, Q. Qian, Y. Jiang, S. Wang, R. Zhang, L. Geng, L.Q. Wang, J. Mater. Sci. Technol. 119, 156 (2022)
DOI |
[5] | S. Wang, L.J. Huang, S. Jiang, R. Zhang, Q. An, Y. Sun, L. Geng, Sci. China Technol. Sci. 63, 2687 (2020) |
[6] | A. Pineau, D.L. McDowell, E.P. Busso, S.D. Antolovich, Acta Mater. 107, 484 (2016) |
[7] | H.W. Fu, B. Donges, U. Krupp, U. Pietsch, C.P. Fritzen, X.B. Yun, H.J. Christ, Acta Mater. 199, 278 (2020) |
[8] | Y.Y. Bai, T. Guo, J.W. Wang, J. Gao, K.W. Gao, X.L. Pang, Acta Mater. 217, 117179 (2021) |
[9] | Y. Liu, J. Zhang, S.J. Li, W.T. Hou, H. Wang, Q.S. Xu, Y.L. Hao, R. Yang, Acta Metall. Sin. -Engl. Lett. 30, 1163 (2017) |
[10] | S.K. Jha, C.J. Szczepanski, P.J. Golden, W.J. Porter, R. John, Int. J.Fatigue 42, 248 (2012) |
[11] | W.C. Liu, J. Huang, J.W. Liu, X.H. Wu, K. Zhang, A.J. Huang, Int. J.Fatigue 148, 106203 (2021) |
[12] | X. Song, L. Wang, M. Niinomi, M. Nakai, Y. Liu, Mater. Sci. Eng. A 640, 154 (2015) |
[13] | L.C. Xie, S.Y. Ren, F. Yin, F. Wang, D.S. Qian, Y.L. Song, L. Hua, L.Q. Wang, L.C. Zhang, W.J. Lu, Mater. Charact. 195, 112511 (2023) |
[14] | C.Q. Sun, H. Wu, W.Q. Chi, W.J. Wang, G.P. Zhang, Int. J.Fatigue 167, 107331 (2023) |
[15] | T. Sun, Y. Liu, S.J. Li, J.P. Li, Acta Metall. Sin. -Engl. Lett. 32, 869 (2019) |
[16] | K. Wang, F. Wang, W.C. Cui, A.L. Tian, Acta Metall. Sin. -Engl. Lett. 28, 619 (2015) |
[17] | J. Song, H.Q. Liu, J. Cui, Y.J. Liu, L. Li, Y. Chen, Q.Y. Wang, Q. Chen, Int. J.Fatigue 168, 107426 (2023) |
[18] | X.Y. Wang, S.P. Li, Y.F. Han, G.F. Huang, J.W. Mao, W.J. Lu, Scr. Mater. 196, 113758 (2021) |
[19] | K.M. Wang, K. Song, R.S. Xin, L. Zhao, L.Y. Xu, Int. J.Plasticity 167, 103660 (2023) |
[20] | C.H. Liu, X. Xu, T.Z. Sun, R. Thomas, J.Q. da Fonseca, M. Preuss, Acta Mater. 253, 118957 (2023) |
[21] | H. Hirai, H. Kurita, S. Gourdet, K. Fujita, K. Nakazawa, S. Kikuchi, Eng. Fract. Mech. 238, 107284 (2020) |
[22] | V. Sinha, M.J. Mills, J.C. Williams, J. Mater. Sci. 42, 8334 (2007) |
[23] | S. Wang, L. Huang, S. Jiang, R. Zhang, B. Liu, F. Sun, Q. An, Y. Jiao, L. Geng, Mater. Sci. Eng. A 804, 140783 (2021) |
[24] | L.J. Huang, F.Y. Yang, H.T. Hu, X.D. Rong, L. Geng, L.Z. Wu, Mater. Des. 51, 421 (2013) |
[25] | S. Wang, L.J. Huang, R. Zhang, Q. An, F.B. Sun, F.C. Meng, L. Geng, Mater. Charact. 194, 112425 (2022) |
[26] | V. Sinha, A.L. Pilchak, S.K. Jha, W.J. Porter, R. John, J.M. Larsen, Metall. Mater. Trans. A 49, 1061 (2018) |
[27] | N. Macallister, T.H. Becker, Acta Mater. 237, 118189 (2022) |
[28] | Z.H. Jiao, X.R. Wu, H.C. Yu, R.D. Xu, L.L. Wu, Int. J.Fatigue 167, 107252 (2023) |
[29] | P.O. Tympel, T.C. Lindley, E.A. Saunders, M. Dixon, D. Dye, Acta Mater. 103, 77 (2016) |
[30] | K. Yang, C. He, Q. Huang, Z.Y. Huang, C. Wang, Q.Y. Wang, Y.J. Liu, B. Zhong, Int. J.Fatigue 99, 35 (2017) |
[31] | W.Q. Chi, G. Li, W.J. Wang, C.Q. Sun, Int. J.Fatigue 160, 106862 (2022) |
[32] | Z.H. Wu, H.C. Kou, N.N. Chen, K. Hua, M.Q. Zhang, J.K. Fan, B. Tang, J.S. Li, Mater. Sci. Eng. A 798, 140222 (2020) |
[33] | K. Zhang, Y. Liu, X.N. Tian, Y. Yang, Y.M. Zhu, M. Bermingham, A.J. Huang, Int. J.Fatigue 168, 107454 (2023) |
[34] | P.D. He, R.F. Webster, V. Yakubov, H. Kong, Q. Yang, S.K. Huang, M. Ferry, J.J. Kruzic, X.P. Li, Acta Mater. 220, 117312 (2021) |
[35] | J.W. Geng, G. Liu, F.F. Wang, T.R. Hong, J.C. Dai, M.L. Wang, D. Chen, N.H. Ma, H.W. Wang, Mater. Des. 135, 423 (2017) |
[36] | C.H. Liu, R. Thomas, T.Z. Sun, J. Donoghue, X. Zhang, T.L. Burnett, J.Q.D. Fonseca, M. Preuss, Acta Mater. 233, 117967 (2022) |
[37] | F. Bridier, P. Villechaise, J. Mendez, Acta Mater. 56, 3951 (2008) |
[38] | A.L. Pilchak, R.E.A. Williams, J.C. Williams, Metall. Mater. Trans. A 41, 106 (2010) |
[39] | C.C. Wojcik, K.S. Chan, D.A. Koss, Acta Metall. Mater. 36, 1261 (1988) |
[40] | J.M. Larsen, S.K. Jha, C.J. Szczepanski, M.J. Caton, R. John, A.H. Rosenberger, D.J. Buchanan, P.J. Golden, J.R. Jira, Int. J.Fatigue 57, 103 (2013) |
[41] | I. Bantounas, D. Dye, T.C. Lindley, Acta Mater. 57, 3584 (2009) |
[42] | S. Joseph, I. Bantounas, T.C. Lindley, D. Dye, Int. J.Plasticity 100, 90 (2018) |
[43] | Y.X. Liu, W. Chen, Z.Q. Li, B. Tang, X.Q. Han, G. Yao, Int. J.Fatigue 97, 79 (2017) |
[44] | W. Shen, A.B.O. Soboyejo, W.O. Syejo, Metall. Mater. Trans. A 35, 163 (2004) |
[45] | A.L. Pilchak, Scr. Mater. 74, 68 (2014) |
[46] | K. Zhang, K.V. Yang, S. Lim, X. Wu, C.H.J. Davies, Int. J.Fatigue 104, 1 (2017) |
[47] |
F. Briffod, A. Bleuset, T. Shiraiwa, M. Enoki, Acta Mater. 177, 56 (2019)
DOI |
[48] | S. Joseph, T.C. Lindley, D. Dye, Int. J.Plasticity 110, 38 (2018) |
[49] | P. Xu, F. Pyczak, W. Limberg, R. Willumeit-Romer, T. Ebel, Mater. Des. 211, 110141 (2021) |
[50] |
X. Xu, D. Lunt, R. Thomas, R.P. Babu, A. Harte, M. Atkinson, J.Q. da Fonseca, M. Preuss, Acta Mater. 175, 376 (2019)
DOI |
[1] | Lei Hu, Liqin Zhang, Feng Hu, Kuan Zheng, Guohong Zhang. Effect of Central Multiphase Microstructure of Thick Plates on Work Hardening and Crack Propagation [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 325-338. |
[2] | Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131. |
[3] | Qiu-Yue Jia, Yu-Min Wang, Xu Zhang, Guo-Xing Zhang, Qing Yang, Li-Na Yang, Xu Kong, Xiao-Fang Li, Rui Yang. Multiscale Failure Mechanism Analysis of SiC Fiber-Reinforced TC17 Composite Subjected to Transverse Tensile Loading at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1007-1022. |
[4] | Keli Liu, Junsheng Wang, Bing Wang, Pengcheng Mao, Yanhong Yang, Yizhou Zhou. Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 133-145. |
[5] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[6] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[7] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[8] | Qi-Chuan Jiang, Xu-Min Zhao, Feng Qiu, Tian-Ning Ma, Qing-Long Zhao. The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 692-698. |
[9] | Noritake Hiyoshi. Crack Initiation and Propagation Evaluation for Sn-5Sb Solder Under Low-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 851-856. |
[10] | Meng Wang, Zhen-Yu Liu, Cheng-Gang Li. Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238-237. |
[11] | Yun-Long Xue, Shuang-Ming Li, Hong Zhong, Lai-Ping Li, Heng-Zhi Fu. Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr-Nb-Ti Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 514-520. |
[12] | Zhi-Dong Fan, Dong Wang, Lang-Hong Lou. Corporate Effects of Temperature and Strain Range on the Low Cycle Fatigue Life of a Single-Crystal Superalloy DD10 [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 152-158. |
[13] | Geng Lin, Huang Lujun. High Temperature Properties of Discontinuously Reinforced Titanium Matrix Composites: A Review [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 787-797. |
[14] | Lasko Galina, Weber Ulrich, Schmauder Siegfried. Finite Element Simulations of Crack Propagation in Al2O3/6061Al Composites [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 853-861. |
[15] | Jiheng Wang, Xianglong Guo, Lv Xiao, Liqiang Wang, Weijie Lu, Baohui Li, Zhongquan Li, Di Zhang. Effect of B4C on the Microstructure and Mechanical Properties of As-Cast TiB+TiC/TC4 Composites [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 205-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||