Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 777-792.DOI: 10.1007/s40195-023-01657-x
Previous Articles Next Articles
Hasfi F. Nurly1,2, Jinhu Zhang2, Dechun Ren2, Yusheng Cai2, Haibin Ji2(), Dongsheng Xu1,2, Zhicheng Dong3, Hao Wang3, Qingmiao Hu2, Jiafeng Lei2, Rui Yang1,2,4(
)
Received:
2023-06-25
Revised:
2023-09-26
Accepted:
2023-10-19
Online:
2024-05-10
Published:
2024-06-14
Contact:
Haibin Ji, hbji@imr.ac.cn; Rui Yang, ryang@imr.ac.cn
Hasfi F. Nurly, Jinhu Zhang, Dechun Ren, Yusheng Cai, Haibin Ji, Dongsheng Xu, Zhicheng Dong, Hao Wang, Qingmiao Hu, Jiafeng Lei, Rui Yang. Refinement of α′ Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 777-792.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Design model, scanning strategies, and as-built material (dimension in mm) of SLMed Ti-6Al-4V. b Morphology of powders and c their size distribution of Ti-6Al-4V-xO
Alloy | Ti | Al | V | O | Fe | H | C | N | Si |
---|---|---|---|---|---|---|---|---|---|
TC4-1 | Bal | 5.86 | 4.18 | 0.11 | 0.032 | 0.0019 | 0.0064 | 0.011 | 0.01 |
TC4-2 | Bal | 5.85 | 4.18 | 0.16 | 0.027 | 0.0019 | 0.012 | 0.0098 | 0.01 |
TC4-3 | Bal | 5.85 | 4.16 | 0.21 | 0.026 | 0.0017 | 0.018 | 0.0093 | 0.01 |
TC4-4 | Bal | 5.95 | 4.16 | 0.25 | 0.022 | 0.0018 | 0.023 | 0.0086 | 0.01 |
Table 1 Chemical compositions of SLMed Ti-6Al-4V-xO alloys (wt%)
Alloy | Ti | Al | V | O | Fe | H | C | N | Si |
---|---|---|---|---|---|---|---|---|---|
TC4-1 | Bal | 5.86 | 4.18 | 0.11 | 0.032 | 0.0019 | 0.0064 | 0.011 | 0.01 |
TC4-2 | Bal | 5.85 | 4.18 | 0.16 | 0.027 | 0.0019 | 0.012 | 0.0098 | 0.01 |
TC4-3 | Bal | 5.85 | 4.16 | 0.21 | 0.026 | 0.0017 | 0.018 | 0.0093 | 0.01 |
TC4-4 | Bal | 5.95 | 4.16 | 0.25 | 0.022 | 0.0018 | 0.023 | 0.0086 | 0.01 |
Alloy composition (wt%) | △Gβ→α (J/mol) | △GT (J/mol) | △Gsubs (J/mol) | △Gint (J/mol) | Ms (°C) | Tβ (°C) |
---|---|---|---|---|---|---|
Ti | 130.861 | 130.861 | 0 | 0 | 845.950 | 882 |
Ti-1Al | 201.404 | 129.484 | 71.920 | 0 | 848.300 | 909 |
Ti-2Al | 269.795 | 128.327 | 141.468 | 0 | 849.400 | 933 |
Ti-3Al | 336.202 | 127.296 | 208.906 | 0 | 849.800 | 956 |
Ti-4Al | 400.776 | 126.360 | 274.416 | 0 | 849.700 | 976 |
Ti-5Al | 463.700 | 125.514 | 338.186 | 0 | 849.100 | 996 |
Ti-6Al | 525.025 | 124.728 | 400.297 | 0 | 848.200 | 1015 |
Ti-1V | 136.676 | 136.117 | 0.559 | 0 | 813.425 | 863 |
Ti-2V | 142.599 | 141.436 | 1.162 | 0 | 780.525 | 846 |
Ti-3V | 148.568 | 146.758 | 1.810 | 0 | 747.625 | 829 |
Ti-4V | 154.584 | 152.081 | 2.502 | 0 | 714.725 | 813 |
Ti-6Al-1V | 550.600 | 130.636 | 420.013 | 0 | 809.900 | 996 |
Ti-6Al-2V | 580.500 | 137.522 | 442.948 | 0 | 765.250 | 978 |
Ti-6Al-3V | 614.200 | 145.314 | 468.886 | 0 | 714.725 | 959 |
Ti-1Al-4V | 238.879 | 151.852 | 87.0262 | 0 | 708.850 | 837 |
Ti-2Al-4V | 322.032 | 151.813 | 170.218 | 0 | 701.800 | 859 |
Ti-3Al-4V | 404.374 | 151.960 | 252.414 | 0 | 693.575 | 881 |
Ti-4Al-4V | 486.802 | 152.471 | 334.331 | 0 | 683.000 | 901 |
Ti-5Al-4V | 569.883 | 153.338 | 416.545 | 0 | 670.075 | 922 |
Ti-6Al-4V | 652.850 | 154.247 | 498.603 | 0 | 656.800 | 942 |
Ti-6Al-4V-0.11O | 658.379 | 152.462 | 491.803 | 14.114 | 668.500 | 963 |
Ti-6Al-4V-0.16O | 660.397 | 151.569 | 488.457 | 20.371 | 674.350 | 973 |
Ti-6Al-4V-0.21O | 662.981 | 150.826 | 485.600 | 26.555 | 679.225 | 983 |
Ti-6Al-4V-0.25O | 664.327 | 150.081 | 482.836 | 31.410 | 684.100 | 991 |
Table 2 Chemical driving force of the BCC to HCP structural transformation △Gβ→α, the elastic strain energy △GT, the lattice distortion energy due to substitutional elements △Gsubs and due to interstitial elements △Gint at the martensitic start temperature Ms, and β transus Tβ of Ti-Al-V alloys
Alloy composition (wt%) | △Gβ→α (J/mol) | △GT (J/mol) | △Gsubs (J/mol) | △Gint (J/mol) | Ms (°C) | Tβ (°C) |
---|---|---|---|---|---|---|
Ti | 130.861 | 130.861 | 0 | 0 | 845.950 | 882 |
Ti-1Al | 201.404 | 129.484 | 71.920 | 0 | 848.300 | 909 |
Ti-2Al | 269.795 | 128.327 | 141.468 | 0 | 849.400 | 933 |
Ti-3Al | 336.202 | 127.296 | 208.906 | 0 | 849.800 | 956 |
Ti-4Al | 400.776 | 126.360 | 274.416 | 0 | 849.700 | 976 |
Ti-5Al | 463.700 | 125.514 | 338.186 | 0 | 849.100 | 996 |
Ti-6Al | 525.025 | 124.728 | 400.297 | 0 | 848.200 | 1015 |
Ti-1V | 136.676 | 136.117 | 0.559 | 0 | 813.425 | 863 |
Ti-2V | 142.599 | 141.436 | 1.162 | 0 | 780.525 | 846 |
Ti-3V | 148.568 | 146.758 | 1.810 | 0 | 747.625 | 829 |
Ti-4V | 154.584 | 152.081 | 2.502 | 0 | 714.725 | 813 |
Ti-6Al-1V | 550.600 | 130.636 | 420.013 | 0 | 809.900 | 996 |
Ti-6Al-2V | 580.500 | 137.522 | 442.948 | 0 | 765.250 | 978 |
Ti-6Al-3V | 614.200 | 145.314 | 468.886 | 0 | 714.725 | 959 |
Ti-1Al-4V | 238.879 | 151.852 | 87.0262 | 0 | 708.850 | 837 |
Ti-2Al-4V | 322.032 | 151.813 | 170.218 | 0 | 701.800 | 859 |
Ti-3Al-4V | 404.374 | 151.960 | 252.414 | 0 | 693.575 | 881 |
Ti-4Al-4V | 486.802 | 152.471 | 334.331 | 0 | 683.000 | 901 |
Ti-5Al-4V | 569.883 | 153.338 | 416.545 | 0 | 670.075 | 922 |
Ti-6Al-4V | 652.850 | 154.247 | 498.603 | 0 | 656.800 | 942 |
Ti-6Al-4V-0.11O | 658.379 | 152.462 | 491.803 | 14.114 | 668.500 | 963 |
Ti-6Al-4V-0.16O | 660.397 | 151.569 | 488.457 | 20.371 | 674.350 | 973 |
Ti-6Al-4V-0.21O | 662.981 | 150.826 | 485.600 | 26.555 | 679.225 | 983 |
Ti-6Al-4V-0.25O | 664.327 | 150.081 | 482.836 | 31.410 | 684.100 | 991 |
Fig. 3 a Variations of the Gibbs free energy of the β and supersaturated α phase of Ti-6Al-4V containing different levels of oxygen with temperature. Crossings of curves of the two phases are within the area of the rectangle which is enlarged in the inset at the bottom left corner, with the T0 temperatures of the crossings indicated. b Variations of the computed Tβ, T0 and Ms temperatures of Ti-Al-V with oxygen content
Fig. 6 a Schematic illustration of the SLM process showing representative microtexyure maps of SLMed Ti-6Al-4V with β columnar grains (black dashed line) with respect to scan strategy YZ, and b contouring reconstructed orientation pole figures showing growth texture parallel to the build direction
Fig. 7 Microstructure of SLMed Ti–6Al–4V (0.25 wt% oxygen) showing a band contrast with CSL component defined $\left[ {11\overline{2}0} \right]$ intervariant misorientation of twin boundaries, neighboring random β phase. b Contouring component analysis of $\left\{ {10\overline{1}1} \right\}$ pole figure, c bright field image $,$ d dark field image of an α′ lath $,$ with selected area electron diffraction patterns of e the α′ phase and f the β phase.
(hkl) | [uvw] | θ (°) |
---|---|---|
- | ||
0 | ||
90 | ||
90 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 | ||
- | ||
0 | ||
73.7 | ||
73.7 | ||
16.3 | ||
16.3 | ||
90 | ||
90 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 |
Table 3 Martensite habit planes (hkl), its traces [uvw] on (001), and the angle (θ) between [uvw] and $\left[ {1\overline{1}0} \right]$ (the trace line of (334) habit plane), or between [uvw] and $\left[ {4\overline{3}0} \right]$ (the trace line of (344) habit plane)
(hkl) | [uvw] | θ (°) |
---|---|---|
- | ||
0 | ||
90 | ||
90 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 | ||
- | ||
0 | ||
73.7 | ||
73.7 | ||
16.3 | ||
16.3 | ||
90 | ||
90 | ||
8.1 | ||
8.1 | ||
81.9 | ||
81.9 |
Fig. 8 Four SEM images of Fig. 5a, with trace lines of martensite plates marked, and typical angles between these trace lines numbered from 1 to 12. A prior β grain boundary running down the middle of the second image is indicated by a dotted line
Angle | Value (°) | θ (°) |
---|---|---|
1 | 7 | 8.1 |
2 | 13 | 16.3 |
3 | 90 | 90 |
4 | 70 | 73.7 |
5 | 90 | 90 |
6 | 75 | 73.7 |
7 | 70 | 73.7 |
8 | 68 | 73.7 |
9 | 9 | 8.1 |
10 | 70 | 73.7 |
11 | 72 | 73.7 |
12 | 73 | 73.7 |
Table 4 Measured values of the angle number 1 to 12 marked on the SEM images of Fig. 8, together with the closest theoretical value of θ between traces of habit planes as listed in Table 3
Angle | Value (°) | θ (°) |
---|---|---|
1 | 7 | 8.1 |
2 | 13 | 16.3 |
3 | 90 | 90 |
4 | 70 | 73.7 |
5 | 90 | 90 |
6 | 75 | 73.7 |
7 | 70 | 73.7 |
8 | 68 | 73.7 |
9 | 9 | 8.1 |
10 | 70 | 73.7 |
11 | 72 | 73.7 |
12 | 73 | 73.7 |
Fig. 9 Average thickness (width) and length of the first generation of α′ martensite plates based on measurements on SEM images taken from a XY planes and b YZ planes
Alloy | Al | V | O |
---|---|---|---|
TC4-1 | 3.809 | 1.7556 | 2.09 |
TC4-2 | 3.8025 | 1.7556 | 3.04 |
TC4-3 | 3.8025 | 1.7472 | 3.990001 |
TC4-4 | 3.8675 | 1.7472 | 4.750001 |
Table 5 Calculated growth restriction factors Q of different alloying additions in the investigated Ti-6Al-4V alloys
Alloy | Al | V | O |
---|---|---|---|
TC4-1 | 3.809 | 1.7556 | 2.09 |
TC4-2 | 3.8025 | 1.7556 | 3.04 |
TC4-3 | 3.8025 | 1.7472 | 3.990001 |
TC4-4 | 3.8675 | 1.7472 | 4.750001 |
Fig. 10 Analysis of intervariant crystallographic plane distribution of martensite in SLMed Ti-6Al-4V with different oxygen content: a inverse pole figure (IPF) maps, b contour plot of intervariant misorientation axis I, c contour plot of intervariant misorientation axes II + III, and d intensity distribution of specific disorientation angles associated with the Burgers orientation relationship for the alloy containing 0.25% oxygen, with the range of misorientation angle indicated
Fig. 12 a Schematic thermal cycle illustration showing b proposed phase transformation pathway of α′ martensite refinement during SLM processing of Ti-6Al-4V
[1] | R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996) |
[2] | C. Cui, B. Hu, L. Zhao, S. Liu, Mater. Des. 32, 1684 (2011) |
[3] | Y.L. Hao, S.J. Li, R. Yang, Rare Met. 35, 661 (2016) |
[4] | I. Gurrappa, Mater. Charact. 51, 131 (2003) |
[5] | G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007) |
[6] | R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, E. Masanet, J. Clean. Prod. 135, 1559 (2016) |
[7] | S. Liu, Y.C. Shin, Mater. Des. 164, 107552 (2019) |
[8] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016) |
[9] | J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Mater. Des. 108, 308 (2016) |
[10] | W. Xu, E.W. Lui, A. Pateras, M. Qian, M. Brandt, Acta Mater. 125, 390 (2017) |
[11] | B. Van Hooreweder, D. Moens, R. Boonen, J.P. Kruth, P. Sas, Adv. Eng. Mater. 14, 92 (2012) |
[12] | M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616, 1 (2014) |
[13] | B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, J. Alloys Compd. 541, 177 (2012) |
[14] | W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85, 74 (2015) |
[15] | D. Ren, S. Li, H. Wang, W. Hou, Y. Hao, W. Jin, R. Yang, R.D.K. Misra, L.E. Murr, J. Mater. Sci. Technol. 35, 285 (2019) |
[16] | N. Emminghaus, C. Hoff, J. Hermsdorf, S. Kaierle, Addit. Manuf. 46, 102093 (2021) |
[17] | K. Dietrich, J. Diller, S. Dubiez-Le Goff, D. Bauer, P. Forêt, G. Witt, Addit. Manuf. 32, 100980 (2020) |
[18] | H. Conrad, Prog. Mater. Sci. 26, 123 (1981) |
[19] | A.I. Kahveci, G.E. Welsch, Scr. Metall. 20, 1287 (1986) |
[20] | M. Yan, M.S. Dargusch, T. Ebel, M. Qian, Acta Mater. 68, 196 (2014) |
[21] | G. Welsch, W. Bunk, Metall. Trans. A 13, 889 (1982) |
[22] | R.R. Boyer, Titanium and Titanium Alloys, 9th edn. (American Society for Metals, 1985) |
[23] | G. Hu, X. Cai, Y. Rong, Materials Science: Volume 1 Structure (De Gruyter, |
[24] | T.S. Prithiv, Z. Kloenne, D. Li, R. Shi, Y. Zheng, H.L. Fraser, B. Gault, S. Antonov, Scr. Mater. 207, 114320 (2022) |
[25] | C. Katinas, S. Liu, Y.C. Shin, J. Manuf. Sci. Eng. 141, 011001 (2018) |
[26] | S. Liu, Y.C. Shin, Mater. Des. 159, 212 (2018) |
[27] | Y. Zhu, K. Zhang, Z. Meng, K. Zhang, P. Hodgson, N. Birbilis, M. Weyland, H.L. Fraser, S.C.V. Lim, H. Peng, R. Yang, H. Wang, A. Huang, Nat. Mater. 21, 1258 (2022) |
[28] | H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013) |
[29] | N. Kazantseva, P. Krakhmalev, M. Thuvander, I. Yadroitsev, N. Vinogradova, I. Ezhov, Mater. Charact. 146, 101 (2018) |
[30] | J. He, D. Li, W. Jiang, L. Ke, G. Qin, Y. Ye, Q. Qin, D. Qiu, Materials (Basel). 12, 321 (2019) |
[31] | L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, Acta Mater. 58, 3303 (2010) |
[32] | T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998) |
[33] | S.M. Kelly, S.L. Kampe, Metall. Mater. Trans. A 35, 1869 ( 2004) |
[34] | A. Crespo, R. Vilar, Scr. Mater. 63, 140 (2010) |
[35] | J. Ahn, E. He, L. Chen, R.C. Wimpory, J.P. Dear, C.M. Davies, Mater. Des. 115, 441 (2017) |
[36] |
C. Kenel, D. Grolimund, X. Li, E. Panepucci, V.A. Samson, D.F. Sanchez, F. Marone, C. Leinenbach, Sci. Rep. 7, 16358 (2017)
DOI PMID |
[37] | H.S. Tran, J.T. Tchuindjang, H. Paydas, A. Mertens, R.T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, A.M. Habraken, Mater. Des. 128, 130 (2017) |
[38] | S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Scr. Mater. 60, 611 (2009) |
[39] | Y. Kuang,Thesis: Generation of TTT and CCT Curves for Cast Ti-6Al-4V Alloy, Univeristy of Florida, 2004. |
[40] | J.T. Tchuindjang, H. Paydas, H.S. Tran, R. Carrus, L. Duchêne, A. Mertens, A.M. Habraken, Mater. 14, 2985 (2021) |
[41] | E.I. Galindo-Nava, Scr. Mater. 138, 6 (2017) |
[42] | M. Klinger, J. Appl. Crystallogr. 50, 1226 (2017) |
[43] | J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ, H.L. Fraser, Mater. Sci. Eng. A 372, 191 (2004) |
[44] | P.C. Collins, B. Welk, T. Searles, J. Tiley, J.C. Russ, H.L. Fraser, Mater. Sci. Eng. A 508, 174 (2009) |
[45] | B.J. Hayes, B.W. Martin, B. Welk, S.J. Kuhr, T.K. Ales, D.A. Brice, I. Ghamarian, A.H. Baker, C.V. Haden, D.G. Harlow, H.L. Fraser, P.C. Collins, Acta Mater. 133, 120 (2017) |
[46] | S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates,Calphad 26, 175 (2002) |
[47] | L.E. Tanner, Time-Temperature-Transformation Diagrams of the Titanium Sheet-Rolling-Program Alloys (Report on Department of Defense, United States, |
[48] | G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, |
[49] | M. Majdic, G. Ziegler, Met. Res. Adv. Technol. 64, 751 (1973) |
[50] | G. Ghosh, G.B. Olson, Acta Metall. Mater. 42, 3361 (1994) |
[51] | G. Ghosh, G.B. Olson, Acta Metall. Mater. 42, 3371 (1994) |
[52] | Y.C. Huang, S. Suzuki, H. Kaneko, T. Sato, in Science, Technology and Application of Titanium, ed. by R. I. Jaffee and Promisel (Pergamon, 1970), pp. 691-693 |
[53] | L. Kaufman, Acta Metall. 7, 575 (1959) |
[54] | S. Banerjee, P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, 1st edn. (Pergamon Materials Series, Elsevier, Oxford, 2007) |
[55] | H.H. Weigand, Int. J. Mater. Res. 54, 43 (1963) |
[56] | S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010) |
[57] | E. Farabi, V. Tari, P.D. Hodgson, G.S. Rohrer, H. Beladi, J. Mater. Sci. 55, 15299 (2020) |
[58] | A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 3rd edn. (Wiley, 2012) |
[59] | K.M. Knowles, D.A. Smith, Acta Metall. 29, 1445 (1981) |
[60] | Y.C. Liu,JOM 8, 1036 (1956) |
[61] | Y.C. Liu, H. Margolin,JOM 5, 667 (1953) |
[62] | C. Hammond, P.M. Kelly, Acta Metall. 17, 869 (1969) |
[63] | T. Nyyssönen, A.A. Gazder, R. Hielscher, F. Niessen, Acta Mater. 255, 119035 (2023) |
[64] | G.M. Ter Haar, T.H. Becker, Mater. Sci. Eng. A 814, 141185 (2021) |
[65] | J.K. Mackenzie, J.S. Bowles, Acta Metall. 5, 137 (1957) |
[66] | S. Banerjee, R. Krishnan, Metall. Trans. 4, 1811 ( 1973) |
[67] | E. Farabi, P.D. Hodgson, G.S. Rohrer, H. Beladi, Acta Mater. 154, 147 (2018) |
[68] | H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, A. Chiba, Mater. Sci. Eng. A 528, 1512 (2011) |
[69] | M.V. Pantawane, S. Sharma, A. Sharma, S. Dasari, S. Banerjee, R. Banerjee, N.B. Dahotre, Acta Mater. 213, 116954 (2021) |
[70] | Z. Yang, F. Wen, Q. Sun, L. Chai, X. Ma, M. Zhu. (SSRN Electronic Journal, 2022), https://ssrn.com/abstract=4134176. Accessed 7 Oct 2022 |
[71] | M.J. Bermingham, S.D. McDonald, M.S. Dargusch, D.H. StJohn, J. Mater. Res. 23, 97 (2008) |
[72] | M. Simonelli, D.G. McCartney, P. Barriobero-Vila, N.T. Aboulkhair, Y.Y. Tse, A. Clare, R. Hague, Metall. Mater. Trans. A 51, 2444 (2020) |
[73] | M. Tahara, T. Inamura, H.Y. Kim, S. Miyazaki, H. Hosoda, Scr. Mater. 112, 15 (2016) |
[74] | Q. Liang, D. Wang, Y. Zheng, S. Zhao, Y. Gao, Y. Hao, R. Yang, D. Banerjee, H.L. Fraser, Y. Wang, Acta Mater. 186, 415 (2020) |
[75] | M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Acta Mater. 59, 6208 (2011) |
[76] | H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater. 80, 478 (2014) |
[77] | S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51, 2485 (2003) |
[78] | D. Bhattacharyya, G.B. Viswanathan, R. Denkenberger, D. Furrer, H.L. Fraser, Acta Mater. 51, 4679 (2003) |
[79] | R. Shi, V. Dixit, H.L. Fraser, Y. Wang, Acta Mater. 75, 156 (2014) |
[80] | Y. Zheng, R.E.A. Williams, S. Nag, R. Banerjee, H.L. Fraser, D. Banerjee, Scr. Mater. 116, 49 (2016) |
[81] | S. Lee, C. Park, J. Hong, J.T. Yeom, Sci. Rep. 8, 11914 (2018) |
[82] | Z. Nishiyama, M. Oka, Mater. Trans. Japan Inst. Met. Mater. 7, 174 (1966) |
[83] | H. Wang, Q. Chao, L. Yang, M. Cabral, Z.Z. Song, B.Y. Wang, S. Primig, W. Xu, Z.B. Chen, S.P. Ringer, X.Z. Liao, Mater. Res. Lett. 9, 119 (2021) |
[1] | Hulin Tang, Xiang Zhang, Chenping Zhang, Tian Zhou, Shiyue Guo, Gaopeng Xu, Rusheng Zhao, Boyoung Hur, Xuezheng Yue. Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 808-824. |
[2] | Pengwei Jiang, Gang Wang, Yaosha Wu, Zhigang Zheng, Zhaoguo Qiu, Tongchun Kuang, Jibo Huang, Dechang Zeng. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 825-839. |
[3] | Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131. |
[4] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[5] | Leilei Li, Kaikai Song, Qingwei Gao, Changshan Zhou, Xiaoming Liu, Yaocen Wang, Xiaojun Bai, Chongde Cao. Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L12 Nanoprecipitates and Grain Boundary Precipitates [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 78-88. |
[6] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[7] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[8] | Liqing Wang, Zhen Zhang, Zhanyong Zhao, Shenghua Zhang, Peikang Bai. Mixed Grain Structure and Mechanical Property of Ti-6Al-4V-0.5BN (wt%) Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 917-925. |
[9] | Xiaolong Zhang, Yue Jiang, Shupeng Wang, Shuo Wang, Ziqiang Wang, Zhenglei Yu, Zhihui Zhang, Luquan Ren. Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 926-936. |
[10] | Guohao Zhang, Zhiwei Hao, Meng Wang, Xufei Lu, Zhuang Zhao, Qian Wang, Xin Lin, Jing Chen, Weidong Huang. Globularization Mechanism and Near Isotropic Properties in Subcritical Heat-Treated Ti6Al4V Fabricated by Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 937-948. |
[11] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[12] | Yuting Lv, Yaojie Liu, Zhe Zhang, Qiang Zhang, Hongyao Yu, Rui Wang, Guangbao Sun, Guijiang Wei. Microstructures and Mechanical Properties of the TiC/CM247LC Nickel-Based Composite Fabricated by Selective Laser Melting: Effect of Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1936-1946. |
[13] | Libo Zhou, Xisheng Bi, Jinshan Sun, Zhiming Hu, Cong Li, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Wei Chen. Effect of Support Height on Microstructure and Mechanical Properties of Selective Laser Melting Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1947-1960. |
[14] | Xing Zhou, Qiyue Zhang, Jiarui Lu, Ying Zheng, Lin Wu, Dake Xu, Xue Zhang, Qiang Wang. Enhanced Corrosion Resistance and Biofilm Inhibition of Functionally Graded TC4/TC4-5Cu Fabricated by Selective Laser Melting against Streptococcus mutans [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1961-1978. |
[15] | Shangzhou Zhang, Yuankang Wang, Bing Zhou, Fanchao Meng, Hua Zhang, Shujun Li, Qingmiao Hu, Li Zhou. Finite Element Prediction of Residual Stress in Rhombic Dodecahedron Ti-6Al-4V Titanium Alloy Additively Manufactured by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 35-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||