Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 694-704.DOI: 10.1007/s40195-022-01501-8
Binbin Wu1, Fangzhong Hu2, Zhiquan Wang3, Shaopeng Yang2, Rui Zhong3, Chengjia Shang3,4, Zhigang Yang1, Chi Zhang1()
Received:
2022-08-22
Revised:
2022-09-29
Accepted:
2022-10-07
Online:
2023-04-10
Published:
2023-03-31
Contact:
Chi Zhang, chizhang@mail.tsinghua.edu.cn
Binbin Wu, Fangzhong Hu, Zhiquan Wang, Shaopeng Yang, Rui Zhong, Chengjia Shang, Zhigang Yang, Chi Zhang. Unraveling the Effects of Austenitizing Temperature and Austenite Grain Size on the Crystallographic Characteristics and Mechanical Properties of Martensitic Transformation Products in a Low-Alloy Steel[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 694-704.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | Cr | Ni | Mo | Nb |
---|---|---|---|---|---|---|---|
Nb-free | 0.17 | 0.25 | 0.51 | 1.65 | 1.56 | 0.24 | - |
Nb-bearing | 0.17 | 0.24 | 0.53 | 1.55 | 1.62 | 0.22 | 0.035 |
Table 1 Chemical composition of the experimental steel (wt%)
Steel | C | Si | Mn | Cr | Ni | Mo | Nb |
---|---|---|---|---|---|---|---|
Nb-free | 0.17 | 0.25 | 0.51 | 1.65 | 1.56 | 0.24 | - |
Nb-bearing | 0.17 | 0.24 | 0.53 | 1.55 | 1.62 | 0.22 | 0.035 |
Steel | Austenitizing temperature (℃) | Block boundaries (μm−1) | Sub-block boundaries (μm−1) | Packet boundaries (μm−1) |
---|---|---|---|---|
Nb-free | 1050 | 0.74 | 0.54 | 0.31 |
925 | 0.74 | 0.63 | 0.34 | |
800 | 1.02 | 0.40 | 0.37 | |
Nb-bearing | 1050 | 0.57 | 0.35 | 0.40 |
925 | 0.76 | 0.51 | 0.50 | |
800 | 0.76 | 0.47 | 0.39 |
Table 2 Statistics for block, sub-block, and packet boundaries
Steel | Austenitizing temperature (℃) | Block boundaries (μm−1) | Sub-block boundaries (μm−1) | Packet boundaries (μm−1) |
---|---|---|---|---|
Nb-free | 1050 | 0.74 | 0.54 | 0.31 |
925 | 0.74 | 0.63 | 0.34 | |
800 | 1.02 | 0.40 | 0.37 | |
Nb-bearing | 1050 | 0.57 | 0.35 | 0.40 |
925 | 0.76 | 0.51 | 0.50 | |
800 | 0.76 | 0.47 | 0.39 |
Fig. 2 SEM micrographs and band contrast (BC) maps depicting boundary distribution of Nb-free-1050Q a, d, Nb-free-925Q b, e, and Nb-free-800Q c, f samples, respectively, g density of inter-variant boundaries and h strain-stress curves with Charpy impact energy. (White line: 15° > θ > 2°, black line: 45° > θ > 15°, yellow line: θ > 45°)
Fig. 3 SEM micrographs a-c and band contrast (BC) maps d-f depicting boundary distribution in Nb-bearing-1050Q a, d, Nb-bearing-925Q b, e, and Nb-bearing-800Q c, f sample, respectively, g density of inter-variant boundaries and h strain-stress curves with Charpy impact energy. (White line: 15° > θ > 2°, black line: 45° > θ > 15°, yellow line: θ > 45°)
Austenitizing temperature (℃) | Cooling rate (℃/s) | |||||
---|---|---|---|---|---|---|
− 100 | − 50 | − 20 | ||||
Nb-bearing | Nb-free | Nb-bearing | Nb-free | Nb-bearing | Nb-free | |
1050 | − 141 | − 191 | − 237 | − 168 | − 228 | − 259 |
925 | − 186 | − 227 | − 254 | − 277 | − 265 | − 258 |
800 | − 176 | − 187 | − 161 | − 236 | − 211 | − 260 |
Table 3 Maximum undercooling at the completion of transformation for all dilatometer samples
Austenitizing temperature (℃) | Cooling rate (℃/s) | |||||
---|---|---|---|---|---|---|
− 100 | − 50 | − 20 | ||||
Nb-bearing | Nb-free | Nb-bearing | Nb-free | Nb-bearing | Nb-free | |
1050 | − 141 | − 191 | − 237 | − 168 | − 228 | − 259 |
925 | − 186 | − 227 | − 254 | − 277 | − 265 | − 258 |
800 | − 176 | − 187 | − 161 | − 236 | − 211 | − 260 |
Fig. 4 Transformation kinetics curves of Nb-free samples cooled at rates of a − 100, b − 50, and c − 20 °C/s by dilatometer and d a summary of Ms temperatures
Fig. 5 Transformation kinetics curves of Nb-bearing samples cooled at rates of a − 100, b − 50, and c − 20 °C/s by dilatometer and d a summary of Ms temperatures
Fig. 6 Band contrast (BC) maps depicting boundary distribution of Nb-free samples annealed at 800 °C and then cooled at rate of a − 100, b − 50, and c − 20 °C/s sample; d density of inter-variant boundaries; and e transformation rate curves. (White line: 15° > θ > 2°, black line: 45° > θ > 15°, yellow line: θ > 45°)
[1] |
F.G. Caballero, H. K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004)
DOI URL |
[2] | S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438, 237 (2006) |
[3] | X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, S.V. Subramanian, Mater. Sci. Eng. A 704, 448 (2017) |
[4] |
B. Wu, Z. Wang, C. Shang, Y. Yu, Z. Yang, C. Zhang, Mater. Charact. 182, 111528 (2021)
DOI URL |
[5] |
S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006)
DOI URL |
[6] |
X.L. Wang, Z.Q. Wang, A.R. Huang, J.L. Wang, X.C. Li, S.V. Subramanian, C.J. Shang, Z.J. Xie, Mater. Charact. 169, 110634 (2020)
DOI URL |
[7] |
Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, R.D.K. Misra, Int. J. Min. Metall. Mater. 27, 1 (2020)
DOI URL |
[8] |
J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, R.D.K. Misra, Mater. Charact. 136, 20 (2018)
DOI URL |
[9] | Z.J. Xie, B. Langelier, Y.T. Tsai, C.J. Shang, J.R. Yang, S.V. Subramanian, X.P. Ma, X.L. Wang, Mater. Sci. Eng. A 763, 138149 (2019) |
[10] |
N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 60, 2387 (2012)
DOI URL |
[11] |
S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51, 1789 (2003)
DOI URL |
[12] |
B.B. Wu, Z.Q. Wang, Y.S. Yu, X.L. Wang, C.J. Shang, R.D.K. Misra, Scr. Mater. 170, 43 (2019)
DOI URL |
[13] | B.B. Wu, Z.Q. Wang, C.J. Shang, Y.S. Yu, D. Misra, Acta Metall. Sin. -Engl. Lett. 34, 523 (2021) |
[14] |
C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167, 107625 (2019)
DOI URL |
[15] |
J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, R.D.K. Misra, J. Mater. Sci. 54, 6565 (2019)
DOI |
[16] | B.B. Wu, X.L. Wang, Z.Q. Wang, J.X. Zhao, Y.H. Jin, C.S. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 745, 126 (2019) |
[17] |
H. Dong, Y. Zhang, G. Miyamoto, M. Inomoto, H. Chen, Z. Yang, T. Furuhara, Acta Mater. 215, 117081 (2021)
DOI URL |
[18] |
C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers, Scr. Mater. 116, 117 (2016)
DOI URL |
[19] |
C. Du, R. Petrov, M.G.D. Geers, J.P.M. Hoefnagels, Mater. Des. 172, 107646 (2019)
DOI URL |
[20] |
L. Liu, F. Maresca, J.P.M. Hoefnagels, T. Vermeij, M.G.D. Geers, V.G. Kouznetsova, Acta Mater. 205, 116533 (2021)
DOI URL |
[21] | G.B. Olson, M. Cohen, Metall. Trans. A 7, 1905 ( 1976) |
[22] |
D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59 (1959)
DOI URL |
[23] |
H. Knapp, U. Dehlinger, Acta Metall. 4, 289 (1956)
DOI URL |
[24] |
V. Raghavan, M. Cohen, Acta Metall. 20, 333 (1972)
DOI URL |
[25] |
T.Y. Hsu, Y. Linfah, J. Mater. Sci. 18, 3213 (1983)
DOI URL |
[26] | A.D. Brailsford, R. Bullough, J. Nuclear Mater. 121, 44 (1972) |
[27] |
L. Karlsson, Acta Metall. 36, 35 (1988)
DOI URL |
[28] | S.J. Lee, C.J. Van Tyne, Metall. Mater. Trans. A 43, 422 (2012) |
[29] |
T. Hayashi, S. Morito, T. Ohba, Scr. Mater. 180, 1 (2020)
DOI URL |
[30] |
A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, A. Borgenstam, Acta Mater. 60, 7265 (2012)
DOI URL |
[31] |
J. Wang, G.K.H. Madsen, R. Drautz, Model. Simul. Mater. Sc. 26, 025008 (2018)
DOI URL |
[32] |
T. Kaneshita, G. Miyamoto, T. Furuhara, Acta Mater. 127, 368 (2017)
DOI URL |
[33] |
H.K. Yeddu, Comput. Mater. Sci. 154, 75 (2018)
DOI URL |
[34] | S.S. Babu, H. K.D.H. Bhadeshia, Mater. Trans. 32, 679 (1991) |
[1] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
[2] | Yakui Chen, Dong Wu, Dianzhong Li, Yiyi Li, Shanping Lu. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr-9Ni-Nb Austenitic Stainless Steel Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 637-649. |
[3] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[4] | Peng Liu, Xiaodong Hou, Chaoyun Yang, Yikun Luan, Chengwu Zheng, Dianzhong Li. Synergic Evolution of Microstructure-Texture-Stored Energy in Rare-Earth-Added Interstitial-Free Steels Undergoing Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 661-680. |
[5] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
[6] | Siyi Qiu, Hui Liu, Menglei Jiang, Shiling Min, Yanlin Gu, Qingyan Wang, Jing Yang, Xuejun Li, Zhuoer Chen, Juan Hou. A Brief Review on He Ion Irradiation Research of Steel and Iron-Based Alloys in Nuclear Power Plants [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 529-551. |
[7] | Xueli Wang, Xin Ji, Bin He, Dongpo Wang, Chengning Li, Yongchang Liu, Wei Guan, Lei Cui. Prediction of M-A Constituents and Impact Toughness in Stir Zone of X80 Pipeline Steel Friction Stir Welds [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 573-585. |
[8] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[9] | Yu Zhang, Jing Bai, Ziqi Guan, Xinzeng Liang, Yansong Li, Jianglong Gu, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Phase Stability, Magnetic Properties, and Martensitic Transformation of Ni2−xMn1+x+ySn1−y Heusler Alloy with Excess Mn by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 513-528. |
[10] | Ke Wang, Honghui Li, Yu Zhou, Jingfeng Wang, Renlong Xin, Qing Liu. Dislocation Slip and Crack Nucleation Mechanism in Dual-Phase Microstructure of Titanium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 353-365. |
[11] | Renxian Yang, Xin Cai, Leigang Zheng, Xiaoqiang Hu, Dianzhong Li. Enhancement Mechanism of Cerium in 316LN Austenitic Stainless Steel During Creep at 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 507-512. |
[12] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[13] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. |
[14] | Zuohua Wang, Haidong Sun, Peng Wang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. {112} 〈111〉 Twins or Twinned Variants Induced by Martensitic Transformation? [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 133-140. |
[15] | Fei Guo, Cheng-Wu Zheng, Pei Wang, Dian-Zhong Li, Yi-Yi Li. Effects of Rare Earth on Austenite-Ferrite Phase Transformation in a Low-Carbon Fe-C Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 141-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||