Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 623-636.DOI: 10.1007/s40195-022-01498-0
Previous Articles Next Articles
Xuelin Wang1,2(), Wenjuan Su1, Zhenjia Xie1, Xiucheng Li1, Wenhao Zhou3, Chengjia Shang1,2(
), Qichen Wang4,5, Jian Bai4,5, Lianquan Wu6
Received:
2022-08-15
Revised:
2022-09-09
Accepted:
2022-09-22
Online:
2023-04-10
Published:
2023-03-31
Contact:
Xuelin Wang, xuelin2076@ustb.edu.cn; Chengjia Shang, cjshang@ustb.edu.cn
Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636.
Add to citation manager EndNote|Ris|BibTeX
Material | C | Si | Mn | P | S | Cr | Nb | V | Ti | Ni | Cu | Mo | B | Alt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental steel | 0.08 | 0.3 | 1.55 | 0.008 | 0.002 | 0.32 | 0.04 | 0.035 | 0.015 | - | - | 0.016 | 0.0016 | 0.04 |
SAW welding wire | 0.08 | 0.05 | 1.53 | 0.013 | 0.001 | 0.018 | - | - | - | 0.01 | 0.02 | - | - | - |
LHW welding wire | 0.07 | 0.8 | 1.45 | 0.015 | 0.014 | - | - | - | - | - | 0.15 | - | - | - |
Table 1 Chemical compositions of the experimental steel and welding wires (wt%)
Material | C | Si | Mn | P | S | Cr | Nb | V | Ti | Ni | Cu | Mo | B | Alt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Experimental steel | 0.08 | 0.3 | 1.55 | 0.008 | 0.002 | 0.32 | 0.04 | 0.035 | 0.015 | - | - | 0.016 | 0.0016 | 0.04 |
SAW welding wire | 0.08 | 0.05 | 1.53 | 0.013 | 0.001 | 0.018 | - | - | - | 0.01 | 0.02 | - | - | - |
LHW welding wire | 0.07 | 0.8 | 1.45 | 0.015 | 0.014 | - | - | - | - | - | 0.15 | - | - | - |
Welding method | Current (A) | Voltage (V) | Welding speed (cm/min) | Heat input (kJ/cm) | Welding wire | Diameter of welding wire (mm) |
---|---|---|---|---|---|---|
SAW | 501 | 34.1 | 30 | 34.2 | AWS A5.17 F7A0-EH14 | 4.0 |
LHW | 280 | 25 | 100 | 4.2 | AWS A5.18 ER70S-6 | 1.2 |
Table 2 Welding process parameters
Welding method | Current (A) | Voltage (V) | Welding speed (cm/min) | Heat input (kJ/cm) | Welding wire | Diameter of welding wire (mm) |
---|---|---|---|---|---|---|
SAW | 501 | 34.1 | 30 | 34.2 | AWS A5.17 F7A0-EH14 | 4.0 |
LHW | 280 | 25 | 100 | 4.2 | AWS A5.18 ER70S-6 | 1.2 |
Fig. 1 Macro morphologies of the welded joints obtained by using SAW a and LHW b, and location of the measurement of mechanical properties in the test samples
Fig. 2 Impact toughness and DBTT evolution in welded zones of SAW and LHW: a-c impact toughness of WM, FL and HAZ at series temperature, d DBTT of WM, FL and HAZ
Fig. 6 Optical microstructure evolution in welded joints of SAW a-d and LHW e-h: a, e WM, b, f CGHAZ, c, g FGHAZ, and d, h ICHAZ. (AF: acicular ferrite, GBF: grain boundary ferrite, GB: granular bainite, LB: lath bainite, QPF: quasi-polygonal ferrite, BF: bainitic ferrite, M/A: matrensite/austenite constituent)
Fig. 7 BC maps showing the microstructure evolution in welded joints of SAW a-c and LHW d-f: a, d WM, b, e FGHAZ, and c, f ICHAZ. (RA: retained austenite)
Fig. 8 BC maps a, d, boundaries distribution maps b, e and IPF maps c, f showing CGHAZ microstructure evolution in welded joints of SAW a-c and LHW d-f
Fig. 9 Grain boundaries distribution a, and volume fraction and average size of retained austenite (RA, fcc phase) b obtained in CGHAZ of SAW and LHW joints
Fig. 10 IPF maps a,e showing prior austenite grains reconstructed in CGHAZ of SAW a-d and LHW joints e-h and the corresponding {100}bcc pole figures b, f with symbols and numbers indicating the ideal 24 variants, and {110}bcc c, g and {111}fcc d, h pole figures calibrated by theoretical variants for inner microstructure of prior austenite
Fig. 11 Gran boundaries distribution maps a, e, and CP b, f and Bain c, g group maps showing the crystallographic features in CGHAZ of SAW a-d and LHW e-h joints, and the corresponding transformation mechanisms d, h
Fig. 12 Fraction of 24 variants a and length of intervariant boundaries between V1 and other variants b in reconstructed austenite grains of CGHAZ. (Three colors are used to highlight the 24 variants that separately belong to three different Bain groups, corresponding to the Bain group maps in Fig. 9c and g
Fig. 13 In situ observation of the secondary cracks on the fractured V-notch Charpy sample of CGHAZ in SAW a-h and LHW i, j joints: a position of crack observation, b, c experimental and theoretical {100} pole figures of reconstructed austenite grains in Fig. 13d-f, d-f IPF maps of in situ reconstructed austenite grains, g-j grain boundaries distribution maps and Bain group maps of crack propagation
Welding method | Size and proportion | WM | CGHAZ | FGHAZ | ICHAZ | BM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
SAW | Structure size (μm) | PCG-W | 81.2 ± 11.4 | PAG | 42.7 ± 6.3 | PAG | - | PAG-W | 6.4 ± 2.5 | PAG-W | 6.4 ± 2.5 |
AF | 2.1 ± 1.3 | Packet | 4.7 ± 3.2 | QPF | 4.6 ± 2.2 | QPF | 2.8 ± 1.5 | Packet | 11.2 ± 3.8 | ||
GBF-W | 28.3 ± 13.5 | Block | 7.7 ± 5.4 | M/A | 1.8 ± 0.7 | M/A | 1.6 ± 0.6 | Block | 2.4 ± 0.5 | ||
RA | 0.8 ± 0.3 | RA | 0.8 ± 0.2 | RA | 0.4 ± 0.2 | RA | 0.4 ± 0.1 | - | - | ||
CVN-WM | 100% | - | - | - | - | ||||||
CVN-FL | 50% | 25% | 25% | - | - | ||||||
CVN-HAZ | - | 16.7% | 16.7% | 16.6% | 50% | ||||||
LHW | Structure size (μm) | PCG-W | 68.8 ± 7.1 | PAG | 36.1 ± 5.6 | PAG | - | PAG-W | 6.4 ± 2.5 | PAG-W | 6.4 ± 2.5 |
AF | 1.5 ± 0.9 | Packet | 4.2 ± 2.8 | QPF | 4.2 ± 1.6 | QPF | 3.8 ± 1.4 | Packet | 11.2 ± 3.8 | ||
GBF-W | 18.5 ± 10.1 | Block | 3.4 ± 1.6 | M/A | 1.4 ± 0.5 | M/A | 1.3 ± 0.4 | Block | 2.4 ± 0.5 | ||
RA | 0.6 ± 0.2 | RA | 0.7 ± 0.1 | RA | 0.3 ± 0.1 | RA | 0.4 ± 0.2 | - | - | ||
CVN-WM | 100% | - | - | - | - | ||||||
CVN-FL | 50% | 16.7% | 16.7% | 16.6% | - | ||||||
CVN-HAZ | - | 16.7% | 16.7% | 16.6% | 50% |
Table 3 Size of the microstructures formed in welded zone and BM of the studied steel, and the proportion of each sub region contained in the impact sample
Welding method | Size and proportion | WM | CGHAZ | FGHAZ | ICHAZ | BM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
SAW | Structure size (μm) | PCG-W | 81.2 ± 11.4 | PAG | 42.7 ± 6.3 | PAG | - | PAG-W | 6.4 ± 2.5 | PAG-W | 6.4 ± 2.5 |
AF | 2.1 ± 1.3 | Packet | 4.7 ± 3.2 | QPF | 4.6 ± 2.2 | QPF | 2.8 ± 1.5 | Packet | 11.2 ± 3.8 | ||
GBF-W | 28.3 ± 13.5 | Block | 7.7 ± 5.4 | M/A | 1.8 ± 0.7 | M/A | 1.6 ± 0.6 | Block | 2.4 ± 0.5 | ||
RA | 0.8 ± 0.3 | RA | 0.8 ± 0.2 | RA | 0.4 ± 0.2 | RA | 0.4 ± 0.1 | - | - | ||
CVN-WM | 100% | - | - | - | - | ||||||
CVN-FL | 50% | 25% | 25% | - | - | ||||||
CVN-HAZ | - | 16.7% | 16.7% | 16.6% | 50% | ||||||
LHW | Structure size (μm) | PCG-W | 68.8 ± 7.1 | PAG | 36.1 ± 5.6 | PAG | - | PAG-W | 6.4 ± 2.5 | PAG-W | 6.4 ± 2.5 |
AF | 1.5 ± 0.9 | Packet | 4.2 ± 2.8 | QPF | 4.2 ± 1.6 | QPF | 3.8 ± 1.4 | Packet | 11.2 ± 3.8 | ||
GBF-W | 18.5 ± 10.1 | Block | 3.4 ± 1.6 | M/A | 1.4 ± 0.5 | M/A | 1.3 ± 0.4 | Block | 2.4 ± 0.5 | ||
RA | 0.6 ± 0.2 | RA | 0.7 ± 0.1 | RA | 0.3 ± 0.1 | RA | 0.4 ± 0.2 | - | - | ||
CVN-WM | 100% | - | - | - | - | ||||||
CVN-FL | 50% | 16.7% | 16.7% | 16.6% | - | ||||||
CVN-HAZ | - | 16.7% | 16.7% | 16.6% | 50% |
[1] | Z.M. Wang, X.Y. Li, J.J. Tian, S.B. Lin, J.Y. Tian, Mech. Electr. Eng. Technol. 50, 11 (2021) |
[2] |
L. Li, S.M. Lou, C.M. Wang, Opt. Laser Technol. 150, 107928 (2022)
DOI URL |
[3] |
N. Kashaev, V. Ventzke, G. Cam, J. Manuf. Processes. 36, 571 (2018)
DOI URL |
[4] | X.N. Qi, X.N. Wang, H.S. Di, X.J. Shen, Z.G. Liu, P.C. Huan, L. Chen, Mater. Sci. Eng. A 831, 142207 (2022) |
[5] |
J. Xie, C. Cai, Y. Liang, Z.J. Liu, Y.R. Ma, Opt. Laser Technol. 148, 107729 (2022)
DOI URL |
[6] |
V. Caccese, P.A. Blomquist, K.A. Berube, S.R. Webber, N.J. Orozco, Mar. Struct. 19, 1 (2006)
DOI URL |
[7] |
M. Hashemzadeh, Y. Garbatov, C. Guedes Soares, Ocean Eng. 245, 110411 (2022)
DOI URL |
[8] |
C. Churiaque, J.M. Sánchez-Amaya, Ö. Üstündağ, M. Porrua-Lara, A. Gumenyuk, M. Rethmeier, Opt. Laser Technol. 143, 107284 (2021)
DOI URL |
[9] |
G. Turichin, M. Kuznetsov, I. Tsibulskiy, A. Firsova, Phys. Procedia. 89, 156 (2017)
DOI URL |
[10] | O. Akselsen, G. Wiklund, E. Østby, A. Sørgjerd, A.F.H. Kaplan,Properties of Laser Hybrid Butt Welds of 420 MPa Steel. Proceedings of the International Offshore and Polar Engineering Conference (2013), p. 290 |
[11] |
S. Zhen, Z. Duan, D. Sun, Y. Li, D. Gao, H. Li, Opt. Laser Technol. 59, 11 (2014)
DOI URL |
[12] |
S. Grünenwald, T. Seefeld, F. Vollertsen, M. Kocak, Phys. Procedia. 5, 77 (2010)
DOI URL |
[13] |
I. Bunaziv, O.M. Akselsen, J. Frostevarg, A.F.H. Kaplan, J. Mater. Process. Technol. 256, 216 (2018)
DOI URL |
[14] | X.D. Li, X.P. Ma, S.V. Subramanian, R.D.K. Misra, C.J. Shang, Metall. Mater. Trans. E 2, 1 (2015) |
[15] |
Y. Li, T.N. Baker, Mater. Sci. Technol. 26, 1029 (2010)
DOI URL |
[16] |
Y. You, C.J. Shang, L. Chen, S.V. Subramanian, Mater. Des. 43, 485 (2013)
DOI URL |
[17] | X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 616, 141 (2014) |
[18] | Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, R.D.K. Misra, Int. J. Miner. Metall. Mater. 27, 1 (2020) |
[19] |
X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, B. Liao, Mater. Des. 53, 888 (2014)
DOI URL |
[20] | X.L. Wang, Z.Q. Wang, Z.J. Xie, X.P. Ma, S. Subramanian, C.J. Shang, X.C. Li, J.L. Wang, Math. Biosci. Eng. 16, 6 (2019) |
[21] | X.L. Wang, L.M. Dong, W.W. Yang, Y. Zhang, X.M. Wang, C.J. Shang, Acta. Metall. Sin. 52, 6 (2016) |
[22] |
M. Wahba, M. Mizutani, S. Katayama, Mater. Des. 97, 1 (2016)
DOI URL |
[23] |
Y. You, C.J. Shang, S. Subramanian, Met. Mater. Int. 20, 659 (2014)
DOI URL |
[24] |
X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang, X.C. Li, Mater. Charact. 140, 312 (2018)
DOI URL |
[25] | M.Y. Sun, Z.Q. Wang, X.M. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 778, 139078 (2020) |
[26] | G.V. Kurdjumov, G.Z. Sachs, Über den Mechanismus der Stahlhärtung. Z. Physik. 64, 325 (1930) |
[27] |
A. Lambert-Perlade, A.F. Gourgues, A. Pineau, Acta Mater. 52, 2337 (2004)
DOI URL |
[28] |
G. Miyamoto, N. Takayama, T. Furuhara, Scr. Mater. 60, 1113 (2009)
DOI URL |
[29] | S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438-440, 237 (2006) |
[30] | L. Rancel, M. Gómez, S.F. Medina, I. Gutierrez, Mater. Sci. Eng. A 530, 21 (2011) |
[31] |
N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 60, 2387 (2012)
DOI URL |
[32] | X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, S.V. Subramanian, Mater. Sci. Eng. A 704, 448 (2017) |
[33] |
A. Ghosh, S. Kundu, D. Chakrabarti, Scr. Mater. 81, 8 (2014)
DOI URL |
[34] | S.V. Subramanian, X.P. Ma, L. Collins,Structure-property studies on haz toughness of niobium microalloyed linepipe steels, 6th International Pipeline Technology Conference, Ostend, Oct (2013), p. 1 |
[1] | Xin Zou, Cunli Liu, Muyang Deng, Ji Chen, Lanting Zhang, Ke Chen. Inhibition of Abnormal Grain Growth in Stir Zone via In-Situ Intermetallic Particle Formation During Friction Stir Welding of AA6061 [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 597-610. |
[2] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[3] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
[4] | Shude Ji, Xiao Cui, Lin Ma, Hua Liu, Yingying Zuo, Zhiqing Zhang. Achieving High-Quality Aluminum to Copper Dissimilar Metals Joint via Friction Stir Double-Riveting Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 552-572. |
[5] | Xueli Wang, Xin Ji, Bin He, Dongpo Wang, Chengning Li, Yongchang Liu, Wei Guan, Lei Cui. Prediction of M-A Constituents and Impact Toughness in Stir Zone of X80 Pipeline Steel Friction Stir Welds [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 573-585. |
[6] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[7] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[8] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[9] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[10] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[11] | Bing-Yu Qian, Rui-Zhi Wu, Jian-Feng Sun, Jing-Huai Zhang, Le-Gan Hou, Xiao-Chun Ma, Jia-Hao Wang, Hai-Ting Hu. Evolutions of Microstructure and Mechanical Properties in Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 215-228. |
[12] | Wei Qiu, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen, Yan-Jie Ren, Mao-Hai Yao, Ai-Hu Xiong, Zhuo-Ran Zeng. Effect of Vanadium Nitride (VN) Particles on Microstructure and Mechanical Properties of Extruded AZ31 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 237-250. |
[13] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[14] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[15] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||