Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (8): 1231-1265.DOI: 10.1007/s40195-022-01382-x
Xing-Jiang Hua1,2, Ping Hu1,2(), Hai-Rui Xing1,2, Jia-Yu Han1,2, Song-Wei Ge1,2, Shi-Lei Li1,2, Chao-Jun He1,2, Kuai-She Wang1,2(
), Chun-Juan Cui1
Received:
2021-09-18
Revised:
2021-11-26
Accepted:
2021-12-16
Online:
2022-08-10
Published:
2022-02-15
Contact:
Ping Hu,Kuai-She Wang
About author:
Kuai‑She Wang wangkuaishe888@126.comXing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Increasing trend of alloy chemistry complexity over time [14,19] (IMs: intermetallic or metal compound, HEAs: high-entropy alloys, RHEAs: refractory high-entropy alloys)
Fig. 4 Effect of alloying elements on RHEAs was reviewed from four aspects: preparation method, microstructure, synthesis, and mechanical properties, and toughening mechanism
Alloy system | Phase | Alloy system | Phase | Alloy system | Phase |
---|---|---|---|---|---|
MoNbTaW | BCC | Al0.25NbTaTiV | BCC | CrNbTiZr | BCC + Laves |
MoNbTaVW | BCC | Al0.5NbTaTiV | BCC | CrNbTiVZr | BCC + Laves |
HfNbTaTiZr | BCC | AlNbTaTiV | BCC | Al0.5CrMoNbTi | BCC + Laves |
MoNbTiVZr | BCC | Al0.25MoNbTiV | BCC | Al0.5CrMoNbTiV | BCC + Laves |
MoNbTiZr | BCC | Al0.5MoNbTiV | BCC | Al0.5CrMoNbV | BCC + Laves |
MoNbTiV0.25Zr | BCC | Al0.75MoNbTiV | BCC | CrHfNbTiZr | BCC + Laves |
MoNbTiV0.5Zr | BCC | Al1.25MoNbTiV | BCC | AlCrMoTiW | BCC + Laves |
MoNbTiV0.75Zr | BCC | Al1.5MoNbTiV | BCC | AlCr1.5NbTiV | BCC + Laves |
MoNbTiV1.25Zr | BCC | AlMoNbTiV | BCC | AlCrNbTiV | BCC + Laves |
Mo0.3NbTiVZr | BCC | Al0.3HfNbTaTiZr | BCC | Cr2MoNbTaVW | BCC + Laves |
Mo0.5NbTiVZr | BCC | Al0.5HfNbTaTiZr | BCC | AlCrMoTaTi | BCC + Laves |
Mo0.5NbTiV0.3Zr | BCC | Al0.75HfNbTaTiZr | BCC | Al0.5CrNbTi2V0.5 | BCC + Laves |
Mo0.7NbTiV0.3Zr | BCC | AlCr0.5NbTiV | BCC | AlCrMoSi0.05TaTi | BCC + Laves |
Mo1.3NbTiV0.3Zr | BCC | CrMoNbTaVW | BCC | CoCrMoNb | BCC + Laves |
Mo1.3NbTiVZr | BCC | Al0.3NbTa0.8Ti1.4V0.2Zr1.3 | BCC | CoCrMoNbTi | BCC + Laves |
MoNbTaTi0.25 W | BCC | AlNb1.5Ta0.5Ti1.5Zr0.5 | BCC | CoCrMoNbTi0.2 | BCC + Laves |
MoNbTaTi0.5 W | BCC | MoNbTaTiZr | BCC + HCP | CoCrMoNbTi0.5 | BCC + Laves |
MoNbTaTi0.75 W | BCC | HfTa0.4TiZr | BCC + HCP | CrTaTi0.17VW | BCC + Laves |
HfNbTiVZr | BCC | HfTa0.5TiZr | BCC + HCP | CrTaTi0.3VW | BCC + Laves |
HfMoNbTaTiZr | BCC | HfTa0.6TiZr | BCC + HCP | CrTaVW | BCC + Laves |
HfMoNbTiZr | BCC | HfTaTiZr | BCC + HCP | AlCrMoNbTi | BCC + Laves |
MoNbTaTiVW | BCC | AlHfNbTaTiZr | 2BCC | Al0.5CrMoNbSi0.3TiV | BCC + Laves + M5Si3 |
NbTaTiV | BCC | AlMo0.5NbTa0.5TiZr | B2 | HfNbSi0.5TiVZr | BCC + Laves + M5Si3 |
MoNbTiV | BCC | AlNbTa0.5TiZr | B2 | Hf0.5Mo0.5NbSi0.7TiZr | BCC + M5Si3 |
HfNbTiZr | BCC | AlNbTiVZr0.1 | B2 + Al3Zr5 | Hf0.5Mo0.5NbSi0.1TiZr | BCC + M5Si3 |
HfMoTaTiZr | BCC | AlNbTiVZr0.25 | B2 + Al3Zr5 | Hf0.5Mo0.5NbSi0.3TiZr | BCC + M5Si3 |
Mo0.1NbTiV0.3Zr | BCC | AlNbTiVZr | B2 + Al3Zr5 + Laves | Hf0.5Mo0.5NbSi0.5TiZr | BCC + M5Si3 |
Mo0.3NbTiV0.3Zr | BCC | AlNbTiVZr0.5 | B2 + Al3Zr5 + Laves | Hf0.5Mo0.5NbSi0.9TiZr | BCC + M5Si3 |
MoNbTiV1.5Zr | 2BCC | AlNbTiVZr1.5 | B2 + Al3Zr5 + Laves | HfNbSi0.5TiV | BCC + M5Si3 |
MoNbTiV2Zr | 2BCC | AlMo0.5NbTa0.5TiZr | B2 + BCC | HfMo0.5NbSi0.3TiV0.5 | BCC + M5Si3 |
MoNbTiV3Zr | 2BCC | Al0.3NbTaTi1.4Zr1.3 | B2 + BCC | HfMo0.5NbSi0.5TiV0.5 | BCC + M5Si3 |
NbTiVZr | 2BCC | Al0.5NbTa0.8Ti1.5V0.2Zr | B2 + BCC | HfMo0.5NbSi0.7TiV0.5 | BCC + M5Si3 |
HfMoNbTaTiVZr | 2BCC | Al0.25NbTaTiZr | B2 + BCC | C0.1Hf0.5Mo0.5NbTiZr | BCC + MC |
MoNbTiWZr | 2BCC | Al0.5Mo0.5NbTa0.5TiZr | B2 + BCC | C0.3Hf0.5Mo0.5NbTiZr | BCC + MC |
Table 1 Composition and phase structure of some RHEAs in existing reports
Alloy system | Phase | Alloy system | Phase | Alloy system | Phase |
---|---|---|---|---|---|
MoNbTaW | BCC | Al0.25NbTaTiV | BCC | CrNbTiZr | BCC + Laves |
MoNbTaVW | BCC | Al0.5NbTaTiV | BCC | CrNbTiVZr | BCC + Laves |
HfNbTaTiZr | BCC | AlNbTaTiV | BCC | Al0.5CrMoNbTi | BCC + Laves |
MoNbTiVZr | BCC | Al0.25MoNbTiV | BCC | Al0.5CrMoNbTiV | BCC + Laves |
MoNbTiZr | BCC | Al0.5MoNbTiV | BCC | Al0.5CrMoNbV | BCC + Laves |
MoNbTiV0.25Zr | BCC | Al0.75MoNbTiV | BCC | CrHfNbTiZr | BCC + Laves |
MoNbTiV0.5Zr | BCC | Al1.25MoNbTiV | BCC | AlCrMoTiW | BCC + Laves |
MoNbTiV0.75Zr | BCC | Al1.5MoNbTiV | BCC | AlCr1.5NbTiV | BCC + Laves |
MoNbTiV1.25Zr | BCC | AlMoNbTiV | BCC | AlCrNbTiV | BCC + Laves |
Mo0.3NbTiVZr | BCC | Al0.3HfNbTaTiZr | BCC | Cr2MoNbTaVW | BCC + Laves |
Mo0.5NbTiVZr | BCC | Al0.5HfNbTaTiZr | BCC | AlCrMoTaTi | BCC + Laves |
Mo0.5NbTiV0.3Zr | BCC | Al0.75HfNbTaTiZr | BCC | Al0.5CrNbTi2V0.5 | BCC + Laves |
Mo0.7NbTiV0.3Zr | BCC | AlCr0.5NbTiV | BCC | AlCrMoSi0.05TaTi | BCC + Laves |
Mo1.3NbTiV0.3Zr | BCC | CrMoNbTaVW | BCC | CoCrMoNb | BCC + Laves |
Mo1.3NbTiVZr | BCC | Al0.3NbTa0.8Ti1.4V0.2Zr1.3 | BCC | CoCrMoNbTi | BCC + Laves |
MoNbTaTi0.25 W | BCC | AlNb1.5Ta0.5Ti1.5Zr0.5 | BCC | CoCrMoNbTi0.2 | BCC + Laves |
MoNbTaTi0.5 W | BCC | MoNbTaTiZr | BCC + HCP | CoCrMoNbTi0.5 | BCC + Laves |
MoNbTaTi0.75 W | BCC | HfTa0.4TiZr | BCC + HCP | CrTaTi0.17VW | BCC + Laves |
HfNbTiVZr | BCC | HfTa0.5TiZr | BCC + HCP | CrTaTi0.3VW | BCC + Laves |
HfMoNbTaTiZr | BCC | HfTa0.6TiZr | BCC + HCP | CrTaVW | BCC + Laves |
HfMoNbTiZr | BCC | HfTaTiZr | BCC + HCP | AlCrMoNbTi | BCC + Laves |
MoNbTaTiVW | BCC | AlHfNbTaTiZr | 2BCC | Al0.5CrMoNbSi0.3TiV | BCC + Laves + M5Si3 |
NbTaTiV | BCC | AlMo0.5NbTa0.5TiZr | B2 | HfNbSi0.5TiVZr | BCC + Laves + M5Si3 |
MoNbTiV | BCC | AlNbTa0.5TiZr | B2 | Hf0.5Mo0.5NbSi0.7TiZr | BCC + M5Si3 |
HfNbTiZr | BCC | AlNbTiVZr0.1 | B2 + Al3Zr5 | Hf0.5Mo0.5NbSi0.1TiZr | BCC + M5Si3 |
HfMoTaTiZr | BCC | AlNbTiVZr0.25 | B2 + Al3Zr5 | Hf0.5Mo0.5NbSi0.3TiZr | BCC + M5Si3 |
Mo0.1NbTiV0.3Zr | BCC | AlNbTiVZr | B2 + Al3Zr5 + Laves | Hf0.5Mo0.5NbSi0.5TiZr | BCC + M5Si3 |
Mo0.3NbTiV0.3Zr | BCC | AlNbTiVZr0.5 | B2 + Al3Zr5 + Laves | Hf0.5Mo0.5NbSi0.9TiZr | BCC + M5Si3 |
MoNbTiV1.5Zr | 2BCC | AlNbTiVZr1.5 | B2 + Al3Zr5 + Laves | HfNbSi0.5TiV | BCC + M5Si3 |
MoNbTiV2Zr | 2BCC | AlMo0.5NbTa0.5TiZr | B2 + BCC | HfMo0.5NbSi0.3TiV0.5 | BCC + M5Si3 |
MoNbTiV3Zr | 2BCC | Al0.3NbTaTi1.4Zr1.3 | B2 + BCC | HfMo0.5NbSi0.5TiV0.5 | BCC + M5Si3 |
NbTiVZr | 2BCC | Al0.5NbTa0.8Ti1.5V0.2Zr | B2 + BCC | HfMo0.5NbSi0.7TiV0.5 | BCC + M5Si3 |
HfMoNbTaTiVZr | 2BCC | Al0.25NbTaTiZr | B2 + BCC | C0.1Hf0.5Mo0.5NbTiZr | BCC + MC |
MoNbTiWZr | 2BCC | Al0.5Mo0.5NbTa0.5TiZr | B2 + BCC | C0.3Hf0.5Mo0.5NbTiZr | BCC + MC |
Alloy | Processing condition | Phase | Room temperature yield stress (MPa) | Alloy | Processing condition | Phase | Room temperature yield stress (MPa) |
---|---|---|---|---|---|---|---|
HfNbTaTiZr | HIP + A | BCC | 929 | AlCrMoNbTi | A | BCC | 1010 |
MoNbTaW | HIP + A | BCC | 1058 | AlNbTiV | A | BCC | 1020 |
NbTiVZr | HIP + A | 2BCC | 1105 | AlCrMoTi | A | BCC | 1100 |
MoNbTaVW | HIP + A | BCC | 1246 | CrNbTiZr | HIP + A | BCC + Laves | 1260 |
HfMo0.5NbTiV0.5 | AC | BCC | 1260 | AlNb1.5Ta0.5Ti1.5Zr0.5 | HIP + A | BCC | 1280 |
MoNbTaTiW | AC | BCC | 1343 | CrNbTiVZr | HIP + A | BCC + Laves | 1298 |
HfMoNbTaTiZr | AC | BCC | 1512 | AlCr0.5NbTiV | A | BCC | 1300 |
MoNbTaTiVW | AC | BCC | 1515 | AlMo0.5NbTa0.5TiZr0.5 | HIP + A | B2 | 1320 |
HfMoTaTiZr | AC | BCC | 1600 | Al0.5CrNbTi2V0.5 | A | BCC + Laves | 1340 |
HfMoNbTiZr | AC | BCC | 1719 | AlNbTa0.5TiZr0.5 | HIP + A | B2 | 1352 |
HfNbSi0.5TiV | AC | BCC + M5Si3 | 1399 | ||||
AlCrNbTiV | A | BCC + Laves | 1550 | ||||
CrMo0.5NbTa0.5TiZr | HIP + A | 2BCC + Laves | 1595 | ||||
HfMo0.5NbSi0.3TiV0.5 | AC | BCC + M5Si3 | 1617 | ||||
AlCr1.5NbTiV | A | BCC + Laves | 1700 | ||||
Al0.25NbTaTiZr | HIP + A | B2 + BCC | 1745 | ||||
HfMo0.5NbSi0.5TiV0.5 | AC | BCC + M5Si3 | 1787 | ||||
Al0.4Hf0.6NbTaTiZr | HIP + A | BCC | 1841 | ||||
Al0.3NbTa0.8Ti1.4V0.2Zr1.3 | HIP + A | BCC | 1965 | ||||
Al0.3NbTaTi1.4Zr1.3 | HIP + A | B2 + BCC | 1965 | ||||
AlMo0.5NbTa0.5TiZr | HIP + A | B2 + BCC | 2000 | ||||
Al0.5NbTa0.8Ti1.5V0.2Zr | HIP + A | B2 + BCC | 2035 | ||||
HfMo0.5NbSi0.7TiV0.5 | AC | BCC + M5Si3 | 2134 | ||||
Al0.5Mo0.5NbTa0.5TiZr | HIP + A | B2 + BCC | 2350 |
Table 2 Processing conditions of some RHEAs in existing reports and their room temperature yield stress (the left area is RHEAs containing only refractory metal elements, and the right area is RHEAs containing other additional elements, where AC represents casting, HIP represents hot isostatic pressing, and A represents annealing)
Alloy | Processing condition | Phase | Room temperature yield stress (MPa) | Alloy | Processing condition | Phase | Room temperature yield stress (MPa) |
---|---|---|---|---|---|---|---|
HfNbTaTiZr | HIP + A | BCC | 929 | AlCrMoNbTi | A | BCC | 1010 |
MoNbTaW | HIP + A | BCC | 1058 | AlNbTiV | A | BCC | 1020 |
NbTiVZr | HIP + A | 2BCC | 1105 | AlCrMoTi | A | BCC | 1100 |
MoNbTaVW | HIP + A | BCC | 1246 | CrNbTiZr | HIP + A | BCC + Laves | 1260 |
HfMo0.5NbTiV0.5 | AC | BCC | 1260 | AlNb1.5Ta0.5Ti1.5Zr0.5 | HIP + A | BCC | 1280 |
MoNbTaTiW | AC | BCC | 1343 | CrNbTiVZr | HIP + A | BCC + Laves | 1298 |
HfMoNbTaTiZr | AC | BCC | 1512 | AlCr0.5NbTiV | A | BCC | 1300 |
MoNbTaTiVW | AC | BCC | 1515 | AlMo0.5NbTa0.5TiZr0.5 | HIP + A | B2 | 1320 |
HfMoTaTiZr | AC | BCC | 1600 | Al0.5CrNbTi2V0.5 | A | BCC + Laves | 1340 |
HfMoNbTiZr | AC | BCC | 1719 | AlNbTa0.5TiZr0.5 | HIP + A | B2 | 1352 |
HfNbSi0.5TiV | AC | BCC + M5Si3 | 1399 | ||||
AlCrNbTiV | A | BCC + Laves | 1550 | ||||
CrMo0.5NbTa0.5TiZr | HIP + A | 2BCC + Laves | 1595 | ||||
HfMo0.5NbSi0.3TiV0.5 | AC | BCC + M5Si3 | 1617 | ||||
AlCr1.5NbTiV | A | BCC + Laves | 1700 | ||||
Al0.25NbTaTiZr | HIP + A | B2 + BCC | 1745 | ||||
HfMo0.5NbSi0.5TiV0.5 | AC | BCC + M5Si3 | 1787 | ||||
Al0.4Hf0.6NbTaTiZr | HIP + A | BCC | 1841 | ||||
Al0.3NbTa0.8Ti1.4V0.2Zr1.3 | HIP + A | BCC | 1965 | ||||
Al0.3NbTaTi1.4Zr1.3 | HIP + A | B2 + BCC | 1965 | ||||
AlMo0.5NbTa0.5TiZr | HIP + A | B2 + BCC | 2000 | ||||
Al0.5NbTa0.8Ti1.5V0.2Zr | HIP + A | B2 + BCC | 2035 | ||||
HfMo0.5NbSi0.7TiV0.5 | AC | BCC + M5Si3 | 2134 | ||||
Al0.5Mo0.5NbTa0.5TiZr | HIP + A | B2 + BCC | 2350 |
Fig. 7 Temperature dependence of a yield strength and b specific yield strength of HfMoTaTiZr, HfMoNbTaTiZr, HfNbTaTiZr (in as-solidified condition done by this work for comparison), HfNbTaTiZr (in the hot-isostatic pressed and vacuum annealed condition) HEAs, and two superalloys, Inconel 718 and CMSX-4 (the yield strengths and specific yield strengths of Inconel 718 and CMSX-4 are tensile yield strengths). Nominal composition of Inconel 718 is Ni: 52.5%, Cr: 19.0%, Mo: 3.0%, Nb: 5.1%, Al: 0.5%, Ti: 0.9%, Fe: 18.5%, Mn: 0.2%, Si: 0.2%, and B: 0.04%. That of CMSX-4 is Cr: 6.5%, Co: 10.0%, Mo: 0.6%, W: 6.5%, Ta: 6.5%, Re: 3.0%, Al: 5.5% and Ni: As Balance (in wt%) [86]
Fig. 10 Comparison of Epit and icorr for the Hf0.5Nb0.5Ta0.5Ti1.5Zr RHEA, previously reported HEAs, and some conventional passive alloys in the 3.5 wt% NaCl solution [99]
Fig. 12 Mechanical properties of HfMoxNbTaTiZr alloys: a the engineering stress-strain curves, b the increase of yield strength as functions of solute concentration in the HfMoxNbTaTiZr and other HEAs [87,129,132]
Fig. 13 Room temperature tensile stress-strain curves for the as-cast TiZrHfNb (denoted as a base alloy), (TiZrHfNb)98O2 (denoted as O-2), and (TiZrHfNb)98N2 (denoted as N-2) HEAs. σy is the yield strength (squares), σUTS is the ultimate strength (diamonds) and ε is the elongation (circles). The inset shows the corresponding strain-hardening response (dσ/dε). A higher work-hardening rate is observed for the O-2 HEA variant (TiZrHfNb)98O2 compared to the base HEA TiZrHfNb and the N-2 HEA (TiZrHfNb)98N2 [142]
Fig. 15 Scanning transmission electron microscopy (STEM) high-angle annular dark-field image and fast Fourier transforms (inside the red squares) recorded from a survey sample extracted from the inside-grain region; The microstructure of AlMo0.5NbTa0.5TiZr refractory high-entropy alloy appears to consist of two phases, the coherent precipitation of the disordered plate-like BCC particles from ordered B2 matrix [161,166]
Fig. 16 Microstructure of Al0.5NbTa0.8Ti1.5V0.2Zr in the cast, hot iso-statically pressed (HIPed) and homogenized (1200 °C/24 h/slow cool) condition. APT re-construction of Al- (red) and Ta- (blue) rich regions (left) and compositional changes (proximity histogram) across a BCC-B2 interface (right) [163]
Fig. 17 SEM backscatter electron images of a polished cross section of the hot isostatically pressed (HIPd) NbCrMo0.5Ta0.5TiZr alloy. The three phases (BCC1, BCC2, and FCC) with different morphologies and contrasts, as well as the transition layer (TL), are indicated [63]
Composition | RD (%) | Hv0.2 (GPa) | KIC (MPa·m1/2) |
---|---|---|---|
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 | 96.3 | 21.7 ± 1.1 | 4.06 ± 0.35 |
(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 | 98.1 | 26.3 ± 1.8 | 3.64 ± 0.36 |
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 | 98.5 | 27.0 ± 0.4 | 4.47 ± 0.40 |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 | 92.4 | 17.5 ± 1.2 | - |
(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 | 92.3 | 21.9 ± 1.7 | - |
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 | 92.2 | 22.5 ± 1.7 | - |
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 | 92.2 | 18.8 ± 1.8 | - |
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 | 99.2 | 28.3 ± 1.6 | - |
(Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2 | 97.7 | 26.3 ± 0.7 | - |
TaB2 | 94.8 | 17.5 ± 0.8 | - |
NbB2 | 96.4 | 15.6 ± 0.9 | - |
ZrB2 | 99.8 | 23 ± 0.9(Hv1.0) | 3.5 ± 0.3 |
HfB2 | 95.6 | 17.8 ± 0.5(Hv5.0) | 4.07 ± 0.17 |
TiB2 | 97.1 | 21.7 | 2.8 |
Table 3 Relative density (RD), Vickers hardness (Hv0.2), and fracture toughness (KIC) of high-entropy boride ceramics compared with the data from the literature [196]
Composition | RD (%) | Hv0.2 (GPa) | KIC (MPa·m1/2) |
---|---|---|---|
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 | 96.3 | 21.7 ± 1.1 | 4.06 ± 0.35 |
(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 | 98.1 | 26.3 ± 1.8 | 3.64 ± 0.36 |
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 | 98.5 | 27.0 ± 0.4 | 4.47 ± 0.40 |
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2 | 92.4 | 17.5 ± 1.2 | - |
(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 | 92.3 | 21.9 ± 1.7 | - |
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 | 92.2 | 22.5 ± 1.7 | - |
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 | 92.2 | 18.8 ± 1.8 | - |
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 | 99.2 | 28.3 ± 1.6 | - |
(Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2 | 97.7 | 26.3 ± 0.7 | - |
TaB2 | 94.8 | 17.5 ± 0.8 | - |
NbB2 | 96.4 | 15.6 ± 0.9 | - |
ZrB2 | 99.8 | 23 ± 0.9(Hv1.0) | 3.5 ± 0.3 |
HfB2 | 95.6 | 17.8 ± 0.5(Hv5.0) | 4.07 ± 0.17 |
TiB2 | 97.1 | 21.7 | 2.8 |
Fig. 19 XRD patterns and EBSD images of the as-cast Tax HEAs. The Ta concentration significantly influences the phase constitution of this alloy system, rendering either a single (bcc) or dual-phase (bcc?+?hcp) structure. The decreasing of Ta content destabilizes the bcc matrix and promotes the formation of hcp [52]
Fig. 20 In situ neutron diffraction data reveal structural evolution as a function of applied stress in alloy Ta0.4. a Evolution of diffraction patterns with the applied stress. b Evolution of relative intensities of the (110)bcc and (101)hcp peak as a function of applied stress. c Evolution of lattice strain on (110)bcc,(200)bcc, and (101)hcp during loading-unloading [52]
Fig. 21 Mechanical behavior of the as-cast Tax HEAs at room temperature. a Representative tensile true stress-strain curves. b Corresponding strain-hardening rate curves [52]
Fig. 23 a True and engineering tensile stress-strain curves of HfNbTaTiZr alloy with different grain sizes, in which dashed lines connecting necking point with fracture point are treated to be linear, b yield stress as a function of grain size in the HfNbTaTiZr alloy[225]
Fig. 24 EBSD results for HfNbTaTiZr sheet following a 65% thickness reduction: a Image-quality map b inverse-pole-figure map of grains for the transverse direction. Longitudinal cross section; the rolling direction is horizontal [227]
[1] |
M. Schinhammer, A.C. Hanzi, J.F. Loffler, P.J. Uggowitzer, Acta Biomater. 6, 1705 (2010)
DOI PMID |
[2] | L. Xie, Y. Lin, W.M. Zhang, Hot Work. Technol. 45, 62 (2016) |
[3] | R.P. Verma, M. Kumar Lila, Mater. Today Proc. 46, 10687 (2021) |
[4] | H. Zheng, X.Y. Zhao, Forg. Stamp. Technol. 41, 1 (2016) |
[5] |
C.M. Cepeda-Jiménez, M. Castillo-Rodríguez, M.T. Pérez-Prado, Acta Mater. 165, 164 (2019)
DOI |
[6] | J.M. Cai, G.B. Mi, F. Gao, H. Huang, J.X. Cao, X. Huang, C.X. Cao, J. Mater. Eng. 44, 1 (2016) |
[7] |
M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722 (2016)
DOI PMID |
[8] |
A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater. 49, 2645 (2001)
DOI URL |
[9] | W.F. Guo, Met. Funct. Mater. 16, 49 (2009) |
[10] | H.Y. Zhu, H.F. Sun, Y.C. Li, Adv. Mater. Ind. 9, 67 (2008) |
[11] |
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Acta Mater. 170, 109 (2019)
DOI URL |
[12] |
B. Cantor, Prog. Mater Sci. 120, 100754 (2021)
DOI URL |
[13] | A.M. Li, X.Y. Zhang, Mater. Rep. 21, 56 (2007) |
[14] |
Q.F. He, Z.Y. Ding, Y.F. Ye, Y. Yang, Jom 69, 2092 (2017)
DOI URL |
[15] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[16] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004) |
[17] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)
DOI URL |
[18] |
M.X. Ren, B.S. Li, H.Z. Fu, Trans. Nonferrous Met. Soc. China 23, 991 (2013)
DOI URL |
[19] |
W.R. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018)
DOI URL |
[20] | R.X. Li, J.W. Qiao, P.K. Liaw, Y. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 1033 (2020) |
[21] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[22] |
Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, Intermetallics 66, 67 (2015)
DOI URL |
[23] | J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560, 1 (2007) |
[24] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61, 1 (2014)
DOI URL |
[25] | M.C. Gao, High-entropy alloys, in Fundamentals and Applications. ed. by M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang (Springer, Cham, Switzerland, 2016), 2016), pp. 369-398 |
[26] |
J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132, 35 (2017)
DOI URL |
[27] | O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010) |
[28] |
H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Adv. Eng. Mater. 17, 1134 (2015)
DOI URL |
[29] |
O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015)
DOI PMID |
[30] |
Y. Zhang, Y.J. Zhou, X.D. Hui, M.L. Wang, G.L. Chen, Sci. China Ser. G 51, 427 (2008)
DOI URL |
[31] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics. 19, 698 (2011)
DOI URL |
[32] |
M.C. Gao, B. Zhang, S. Yang, S.M. Guo, Metall. Mater. Trans. A 47, 3333 (2015)
DOI URL |
[33] |
G.M. Karthik, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, E.S. Kim, T.S. Kim, H.S. Kim, Scr. Mater. 195, 113722 (2021)
DOI URL |
[34] |
M.J. Li, Q.J. Chen, X. Cui, X.Y. Peng, G.S. Huang, J. Alloys Compd. 857, 158278 (2021)
DOI URL |
[35] |
M. Feuerbacher, T. Lienig, C. Thomas, Scr. Mater. 152, 40 (2018)
DOI URL |
[36] | R. Li, J. Ren, G.-J. Zhang, J.-Y. He, Y.-P. Lu, T.-M. Wang, T.-J. Li, Acta Metall. Sin. -Engl. Lett. 33, 1046 (2020) |
[37] |
J.P. Couzinié, G. Dirras, L. Perrière, T. Chauveau, E. Leroy, Y. Champion, I. Guillot, Mater. Lett. 126, 285 (2014)
DOI URL |
[38] | É. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, L. Vitos, Int. J. Refract. Met. Hard Mater. 47, 131 (2014) |
[39] | J. Malek, J. Zyka, F. Lukac, M. Vilemova, T. Vlasak, J. Cizek, O. Melikhova, A. Machackova, H.S. Kim, Mater. -Basel 12, 4022 (2019) |
[40] |
P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Appl. Surf. Sci. 476, 242 (2019)
DOI URL |
[41] |
X.L. Yan, L. Constantin, Y.F. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101, 4486 (2018)
DOI URL |
[42] | B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712, 616 (2018) |
[43] |
Y. Long, X.B. Liang, K. Su, H.Y. Peng, X.Z. Li, J. Alloys Compd. 780, 607 (2019)
DOI URL |
[44] | Y. Liu, Y.K. Cao, W.Q. Wu, M. Song, W. Zhang, B. Liu, Chin. J. Nonferrous Met. 29, 2155 (2019) |
[45] |
W.M. Guo, B. Liu, Y. Liu, T.C. Li, A. Fu, Q.H. Fang, Y. Nie, J. Alloys Compd. 776, 428 (2019)
DOI URL |
[46] |
B.R. Song, Y.H. Li, Z.H. Cong, Y.X. Li, Z.X. Song, J. Chen, J. Alloys Compd. 797, 1025 (2019)
DOI URL |
[47] |
Z.C. Chang, S.C. Liang, S. Han, Y.K. Chen, F.S. Shieu, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 2504 (2010)
DOI URL |
[48] | L.Z. Wen, Y.S. Huang, Powder Metall. Technol. 34, 268 (2016) |
[49] | Y.X. Guo, Q.B. Liu, F. Zhou, Chin. J. Rare Met. 41, 1327 (2017) |
[50] |
X.W. Qiu, Infrared Laser Eng. 48, 742004 (2019)
DOI URL |
[51] | J. Sure, D. Sri Maha Vishnu, C. Schwandt, JOM 72, 3895 (2020) |
[52] |
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29, 1701678.1 (2017)
DOI URL |
[53] | N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Sci. Eng. A 704, 82 (2017) |
[54] |
N.Y. Yurchenko, N.D. Stepanov, M.A. Tikhonovsky, G.A. Salishchev, Metals. 6, 298 (2016)
DOI URL |
[55] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Alloys Compd. 660, 197 (2016)
DOI URL |
[56] |
Q. Xu, D.Z. Chen, C.R. Wang, W.C. Cao, Q. Wang, H.Z. Cui, S.Y. Zhang, R.R. Chen, Trans. Nonferrous Met. Soc. China 31, 512 (2021)
DOI URL |
[57] |
Y. Liu, Y. Zhang, H. Zhang, N.J. Wang, X. Chen, H.W. Zhang, Y.X. Li, J. Alloys Compd. 694, 869 (2017)
DOI URL |
[58] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509, 6043 (2011)
DOI URL |
[59] |
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47, 4062 (2012)
DOI URL |
[60] |
Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130, 277 (2014)
DOI URL |
[61] |
F.Y. Tian, L.K. Varga, N.X. Chen, J. Shen, L. Vitos, Intermetallics. 58, 1 (2015)
DOI URL |
[62] | A. Heczel, Y. Huang, T.G. Langdon, J. Gubicza, Mater. Sci. Forum 885, 74 (2017) |
[63] | O.N. Senkov, C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011) |
[64] |
O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61, 1545 (2013)
DOI URL |
[65] |
N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Mater. Sci. Technol. 31, 1184 (2015)
DOI URL |
[66] | S.Y. Lu, J.W. Miao, Y.P. Lu, Chin. J. Rare Met. 45, 530 (2021) |
[67] |
S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011)
DOI URL |
[68] |
O.N. Senkov, D.B. Miracle, J. Alloys Compd. 658, 603 (2016)
DOI URL |
[69] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012)
DOI URL |
[70] |
I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Intermetallics. 71, 76 (2016)
DOI URL |
[71] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008)
DOI URL |
[72] |
Z.J. Wang, W.F. Qiu, Y. Yang, C.T. Liu, Intermetallics. 64, 63 (2015)
DOI URL |
[73] |
Z.J. Wang, Y.H. Huang, Y. Yang, J.C. Wang, C.T. Liu, Scr. Mater. 94, 28 (2015)
DOI URL |
[74] |
N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Intermetallics. 59, 8 (2015)
DOI URL |
[75] |
T.X. Li, Y.P. Lu, T.M. Wang, T.J. Li, Appl. Phys. Lett. 119, 071905 (2021)
DOI URL |
[76] | T.X. Li, Y.P. Lu, Z.Q. Cao, T.M. Wang, T.J. Li, Acta Metall. Sin. 57, 42 (2021) |
[77] |
S.B. Wang, M.X. Wu, D. Shu, G.L. Zhu, D.H. Wang, B.D. Sun, Acta Mater. 201, 517 (2020)
DOI URL |
[78] | T.X. Li, W.N. Jiao, J.W. Miao, Y.P. Lu, E.Y. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Mater. Sci. Eng. A 827, 142061 (2021) |
[79] |
S.J. Wu, X.D. Wang, J.T. Lu, R.T. Qu, Z.F. Zhang, Adv. Eng. Mater. 20, 1800028 (2018)
DOI URL |
[80] |
T.X. Li, J.W. Miao, E.Y. Guo, H. Huang, J. Wang, Y.P. Lu, T.M. Wang, Z.Q. Cao, T.J. Li, Tungsten. 3, 181 (2021)
DOI URL |
[81] |
F. Tian, L.K. Varga, N. Chen, J. Shen, L. Vitos, J. Alloys Compd. 599, 19 (2014)
DOI URL |
[82] |
O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, D.B. Miracle, J. Mater. Sci. 47, 6522 (2012)
DOI URL |
[83] |
H.B. Xie, G.Z. Liu, J.J. Guo, Chin. J. Nonferrous Met. 25, 103 (2015)
DOI URL |
[84] |
O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, H.L. Fraser, Mater. Des. 139, 498 (2018)
DOI URL |
[85] |
J.K. Jensen, B.A. Welk, R.E.A. Williams, J.M. Sosa, D.E. Huber, O.N. Senkov, G.B. Viswanathan, H.L. Fraser, Scr. Mater. 121, 1 (2016)
DOI URL |
[86] |
C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Intermetallics. 62, 76 (2015)
DOI URL |
[87] |
C.C. Juan, K.K. Tseng, W.L. Hsu, M.H. Tsai, C.W. Tsai, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Mater. Lett. 175, 284 (2016)
DOI URL |
[88] |
C. Mathiou, A. Poulia, E. Georgatis, A.E. Karantzalis, Mater. Chem. Phys. 210, 126 (2018)
DOI URL |
[89] |
A. Poulia, E. Georgatis, A. Karantzalis, Met. Mater. Int. 25, 1529 (2019)
DOI URL |
[90] |
A. Poulia, E. Georgatis, A. Lekatou, A. Karantzalis, Adv. Eng. Mater. 19, 1600535 (2017)
DOI URL |
[91] |
A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Int. J. Refract. Met. Hard Mater. 57, 50 (2016)
DOI URL |
[92] |
Z.M. Guo, A.J. Zhang, J.S. Han, J.H. Meng, J. Mater. Sci. 54, 5844 (2019)
DOI URL |
[93] | Z.M. Guo, A.J. Zhang, J.S. Han, J.H. Meng, Tribology. 41, 197 (2021) |
[94] |
M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, S. Mukherjee, J. Alloys Compd. 843, 156004 (2020)
DOI URL |
[95] |
Y. Fu, J. Li, H. Luo, C.W. Du, X.G. Li, J. Mater. Sci. Technol. 80, 217 (2021)
DOI URL |
[96] | S. Ranganathan. Curr. Sci. 85, 1404 (2003) |
[97] |
J.M. Li, X. Yang, R.L. Zhu, Y. Zhang, Metals. 4, 597 (2014)
DOI URL |
[98] |
J. Jayaraj, C. Thinaharan, S. Ningshen, C. Mallika, U. Kamachi Mudali, Intermetallics. 89, 123 (2017)
DOI URL |
[99] |
Q.Y. Zhou, S. Sheikh, P. Ou, D.C. Chen, Q. Hu, S. Guo, Electrochem. Commun. 98, 63 (2019)
DOI URL |
[100] |
K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm, Oxid. Met. 75, 209 (2010)
DOI URL |
[101] |
Y.X. Guo, H.L. Wang, Q.B. Liu, J. Alloys Compd. 834, 155147 (2020)
DOI URL |
[102] | C.T. Liu, X.F. Sun, J. Ma, H.Y. Cong, W.F. Liu, Rare Met. Mater. Eng. 36, 1407 (2007) |
[103] |
G.A. Greene, C.C. Finfrock, Oxid. Met. 55, 505 (2001)
DOI URL |
[104] |
C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, J. Alloys Compd. 583, 162 (2014)
DOI URL |
[105] | J.Y. He, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Mater. Sci. Eng. A 686, 34 (2017) |
[106] |
B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, J. Alloys Compd. 624, 270 (2015)
DOI URL |
[107] | B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, M. Heilmaier, J. Alloys Compd. 688, 468 (2016) |
[108] |
F. Müller, B. Gorr, H.J. Christ, H. Chen, A. Kauffmann, M. Heilmaier, Mater. High Temp. 35, 168 (2017)
DOI URL |
[109] | L. Yin, D.Q. Yi, L.R. Xiao, L. Yang, H.Q. Liu, Mater. Prot. 36, 4 (2003) |
[110] | Q. Zhao, Y.S. Yu, Mater. Rev. 17, 29 (2003) |
[111] | L.X. Zhao, X.P. Guo, Mater. Rep. 20, 61 (2006) |
[112] | J. Yang, G. Zhuo, K. Jiang, X. Zhu, L. Su, Mater. -Basel 13, 1229 (2020) |
[113] |
J.J. Dai, S.Y. Li, H.X. Zhang, H.J. Yu, C.Z. Chen, Y. Li, Surf. Coat. Technol. 344, 479 (2018)
DOI URL |
[114] | Y.Q. Qiao, J.P. Kong, R.Y. Zhou, X.P. Guo,Vacuum 161, 314 (2019) |
[115] |
H. Chen, A. Kauffmann, S. Seils, T. Boll, C.H. Liebscher, I. Harding, K.S. Kumar, D.V. Szabó, S. Schlabach, S. Kauffmann-Weiss, F. Müller, B. Gorr, H.J. Christ, M. Heilmaier, Acta Mater. 176, 123 (2019)
DOI |
[116] |
Y. Liu, W. Shao, C.L. Wang, C.G. Zhou, J. Alloys Compd. 735, 2247 (2018)
DOI URL |
[117] |
Y.K. Cao, Y. Liu, B. Liu, W.D. Zhang, J.W. Wang, M. Du, Trans. Nonferrous Met. Soc. China 29, 1476 (2019)
DOI URL |
[118] |
J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, Y. Liu, J. Alloys Compd. 760, 15 (2018)
DOI URL |
[119] |
V. Behrani, A.J. Thom, M.J. Kramer, M. Akinc, Intermetallics. 14, 24 (2006)
DOI URL |
[120] | C.L. Ma, J.G. Li, Y. Tan, R. Tanaka, S. Hanada, Mater. Sci. Eng. A 384, 377 (2004) |
[121] |
T. Murakamia, C.N. Xu, A. Kitahara, M. Kawaharac, Y. Takahashi, H. Inui, M. Yamaguchie, Intermetallics. 7, 1043 (1999)
DOI URL |
[122] |
J. Wang, X.P. Guo, J.M. Guo, Chin. J. Aeronaut. 22, 544 (2009)
DOI URL |
[123] | A. Mufit, K.M. Mitchell, J.K. Matthew, J.T. Andrew, J.H. Jesse, C. Bruce, Mater. Sci. Eng. A 261, 16 (1999) |
[124] | E.C.T. Ramos, G. Silva, A.S. Ramos, C.A. Nunes, C.A.R.P. Baptista, Mater. Sci. Eng. A 363, 297 (2003) |
[125] | X.M. Fan, X.L. J, Foundry Technology Technol. 38, 2796 (2017). |
[126] | E.I. Galindo-Nava, A. Perlade, P.E.J. Rivera-Díaz-del-Castillo, Modell. Simul. Mater. Sci. Eng. 22, 142 (2014) |
[127] |
L.A. Gypen, A. Deruyttere, Scr. Metall. 15, 815 (1981)
DOI URL |
[128] |
T. Suzuki, Jpn. J. Appl. Phys. 20, 449 (1981)
DOI URL |
[129] |
C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 624, 100 (2015)
DOI URL |
[130] | W. Wang, Z.T. Zhang, J.Z. Niu, H. Wu, S.C. Zhai, Y. Wang, Mater. Today Commun. 16, 242 (2018) |
[131] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics. 84, 153 (2017)
DOI URL |
[132] |
Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Mater. Des. 83, 651 (2015)
DOI URL |
[133] |
L. Qi, D.C. Chrzan, Phys. Rev. Lett. 112, 115503 (2014)
DOI URL |
[134] |
Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, W. Guo, Acta Mater. 120, 228 (2016)
DOI URL |
[135] | L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Mater. Sci. Eng. A 716, 150 (2018) |
[136] |
Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, Z.P. Lu, Intermetallics. 106, 77 (2019)
DOI |
[137] |
Z.W. Wang, L. Baker, Mater. Lett. 180, 153 (2016)
DOI URL |
[138] |
J.B. Seol, J.W. Bae, Z.M. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Acta Mater. 151, 366 (2018)
DOI URL |
[139] |
I. Matsui, T. Uesugi, Y. Takigawa, K. Higashi, Acta Mater. 61, 3360 (2013)
DOI URL |
[140] |
P. Hu, Y.G. Zuo, S.L. Li, H.R. Xing, J.Y. Han, S.W. Ge, X.J. Hua, K.S. Wang, W. Zhang, J.B. Fu, J. Alloys Compd. 870, 159429 (2021)
DOI URL |
[141] | J.M. Tian, P.P. Liu, J.L. Fan, Y.M. Li, China Tungsten Ind. 27 (2008). |
[142] |
Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature. 563, 546 (2018)
DOI URL |
[143] | S.S. Lv, Y.F. Zu, G.Q. Chen, B.J. Zhao, X.S. Fu, W.L. Zhou, Mater. Sci. Eng. A 795, 140035 (2020) |
[144] | R. Labusch, Phys. Status Solidi 41, 659 (1970) |
[145] |
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloys Compd. 696, 1139 (2017)
DOI URL |
[146] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188, 435 (2020)
DOI URL |
[147] |
I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 85, 14 (2015)
DOI URL |
[148] |
H.A. Moreen, R. Taggart, D.H. Polonis, Metall. Mater. Trans. B 2, 265 (1971)
DOI URL |
[149] |
S.I. Rao, E. Antillon, C. Woodward, B. Akdim, T.A. Parthasarathy, O.N. Senkov, Scr. Mater. 165, 103 (2019)
DOI URL |
[150] |
S.I. Rao, B. Akdim, E. Antillon, C. Woodward, T.A. Parthasarathy, O.N. Senkov, Acta Mater. 168, 222 (2019)
DOI |
[151] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33, 3092 (2018)
DOI URL |
[152] | J. Zander, R. Sandström, L. Vitos, Comput. Mater. Sci 41, 86 (2007) |
[153] |
B.Y. Ma, K.C. Shi, H.L. Shang, R.B. Li, G.Y. Li, Surf. Coat. Technol. 321, 52 (2017)
DOI URL |
[154] |
H.B. Kou, W.G. Li, J.Z. Ma, J.X. Shao, Y. Tao, X.Y. Zhang, P.J. Geng, Y. Deng, Y. Li, X.H. Zhang, F.L. Peng, Int. J. Mech. Sci. 140, 83 (2018)
DOI URL |
[155] | H. Sieurin, J. Zander, R. Sandström, Mater. Sci. Eng. A 415, 66 (2006) |
[156] | Z.P. Lu, Z.F. Lei, H.L. Huang, S.F. Liu, F. Zhang, D.B. Duan, P.P. Cao, Y. Wu, X.J. Liu, H. Wang, Acta Metall. Sin. 54, 1553 (2018) |
[157] |
C. Li, M. Zhao, J.C. Li, Q. Jiang, J. Appl. Phys. 104, 113504 (2008)
DOI URL |
[158] |
N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, S.V. Zherebtsov, Mater. Lett. 188, 162 (2017)
DOI URL |
[159] |
D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, R. Banerjee, Scr. Mater. 127, 186 (2017)
DOI URL |
[160] | S. Niu, H.C. Kou, T. Guo, Y. Zhang, J. Wang, J.S. Li, Mater. Sci. Eng. A 671, 82 (2016) |
[161] |
O. Senkov, D. Isheim, D. Seidman, A. Pilchak, Entropy. 18, 102 (2016)
DOI URL |
[162] |
O.N. Senkov, S.V. Senkova, C. Woodward, Acta Mater. 68, 214 (2014)
DOI URL |
[163] |
V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Sci. Rep. 8, 8816 (2018)
DOI PMID |
[164] |
V. Soni, B. Gwalani, T. Alam, S. Dasari, Y. Zheng, O.N. Senkov, D. Miracle, R. Banerjee, Acta Mater. 185, 89 (2020)
DOI URL |
[165] |
V. Soni, B. Gwalani, O.N. Senkov, B. Viswanathan, T. Alam, D.B. Miracle, R. Banerjee, J. Mater. Res. 33, 3235 (2018)
DOI URL |
[166] |
J.M. Sosa, J.K. Jensen, D.E. Huber, G.B. Viswanathan, M.A. Gibson, H.L. Fraser, Mater. Sci. Technol. 31, 1250 (2015)
DOI URL |
[167] | Z.Q. Fu, Phase Formation and Strengthening Mechanisms of Nano/Ultra-fine Grained CoNiFeAlTi System High Entropy Alloys and Their Composites, South China University of Technology, 2015. |
[168] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science. 362, 933 (2018)
DOI PMID |
[169] |
J.H. Pi, Y. Pan, L. Zhang, H. Zhang, J. Alloys Compd. 509, 5641 (2011)
DOI URL |
[170] | T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Sci. Eng. A 556, 170 (2012) |
[171] | O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mater. Sci. Eng. A 565, 51 (2013) |
[172] |
S.S. Lv, Y.F. Zu, G.Q. Chen, X.S. Fu, W.L. Zhou, J. Alloys Compd. 788, 1256 (2019)
DOI URL |
[173] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Intermetallics. 69, 74 (2016)
DOI URL |
[174] |
Y. Zhang, Y. Liu, Y.X. Li, X. Chen, H.W. Zhang, Mater. Lett. 174, 82 (2016)
DOI URL |
[175] |
Y.L. Guo, J.Y. He, W.J. Lu, L.N. Jia, Z.M. Li, Mater. Charact. 172, 110836 (2021)
DOI URL |
[176] | N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Sci. Eng. A 651, 698 (2016) |
[177] |
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Intermetallics. 69, 13 (2016)
DOI URL |
[178] | N. Gao, Y. Long, H.Y. Peng, W.H. Zhang, L. Peng, Chin. J. Mater. Res. 33, 572 (2019) |
[179] | X.C. Wen, F. Zhang, Z.F. Lei, Y. Wu, X.J. Liu, H. Wang, Z.P. Lv, Mater. China 38, 242 (2019) |
[180] |
C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 7029 (2011)
DOI URL |
[181] |
H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61, 2769 (2013)
DOI URL |
[182] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50, 4021 (2002)
DOI URL |
[183] |
K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014)
DOI URL |
[184] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016)
DOI URL |
[185] | K.P. Chen, Z.M. Li, J.X. Ma, T.F. Liu, J.J. Zhang, C.W. Li, X.W. Zhang, J. Ceram. 41, 157 (2020) |
[186] | J.F. Gu, J. Zou, F. Zhang, W. Ji, H. Wang, W.M. Wang, Z.Y. Fu, Mater. China 38, 855 (2019) |
[187] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P.E. Hopkins, J. Luo, S. Curtarolo, D.W. Brenner, K.S. Vecchio, Acta Mater. 166, 271 (2019)
DOI |
[188] |
J.Y. Zhou, J.Y. Zhang, F. Zhang, B. Niu, L.W. Lei, W.M. Wang, Ceram. Int. 44, 22014 (2018)
DOI URL |
[189] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6, 37946 (2016)
DOI URL |
[190] | L. Chen, K. Wang, W.T. Su, W. Zhang, C.G. Xu, Y.J. Wang, Y. Zhou, J. Inorg. Mater. 35, 748 (2020) |
[191] | X.P. Wang, F.T. Kong, J. Aeronaut. Mater. 39, 1 (2019) |
[192] | H.Z. Xiang, F. Quan, W.C. Li, X.L. Liu, A.Q. Mao, H.Y. Yu, Chin. J. Process Eng. 20, 245 (2020) |
[193] |
B.L. Ye, T.Q. Wen, K.H. Huang, C.Z. Wang, Y.H. Chu, J. Am. Ceram. Soc. 102, 4344 (2019)
DOI URL |
[194] |
E. Chicardi, C. García-Garrido, F.J. Gotor, Ceram. Int. 45, 21858 (2019)
DOI |
[195] |
K. Wang, L. Chen, C.G. Xu, W. Zhang, Z.G. Liu, Y.J. Wang, J.H. Ouyang, X.H. Zhang, Y.D. Fu, Y. Zhou, J. Mater. Sci. Technol. 39, 99 (2020)
DOI |
[196] |
Y. Zhang, Z.B. Jiang, S.K. Sun, W.M. Guo, Q.S. Chen, J.X. Qiu, K. Plucknett, H.T. Lin. J. Eur. Ceram. Soc. 39, 3920 (2019)
DOI |
[197] | J.F. Gu, J. Zou, S.K. Sun, H. Wang, S.Y. Yu, J.Y. Zhang, W.M. Wang, Z.Y. Fu, Sci. China Mater. 62, 1898 (2019) |
[198] |
A.D. Pogrebnjak, A.A. Bagdasaryan, V.M. Beresnev, U.S. Nyemchenko, V.I. Ivashchenko, Y.O. Kravchenko, Z.K. Shaimardanov, S.V. Plotnikov, O. Maksakova, Ceram. Int. 43, 771 (2017)
DOI URL |
[199] |
A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, H. Amekura, Y. Takeda, M. Opielak, C. Kozak, J. Alloys Compd. 679, 155 (2016)
DOI URL |
[200] |
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, Nat Commun. 9, 3400 (2018)
DOI URL |
[201] |
D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4, 9536 (2016)
DOI URL |
[202] |
N. Qiu, H. Chen, Z.M. Yang, S. Sun, Y. Wang, Y.H. Cui, J. Alloys Compd. 777, 767 (2019)
DOI URL |
[203] |
J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, J. Luo, J. Materiomics. 5, 337 (2019)
DOI URL |
[204] |
Y. Qin, J.X. Liu, F. Li, X.F. Wei, H.Z. Wu, G.J. Zhang, J. Adv. Ceram. 8, 148 (2019)
DOI URL |
[205] |
T.Q. Wen, H.H. Liu, B.L. Ye, D. Liu, Y.H. Chu, Sci. China Mater. 63, 300 (2019)
DOI URL |
[206] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature. 534, 227 (2016)
DOI URL |
[207] | Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7, 40704 (2017) |
[208] |
L. Wang, T.Q. Cao, X.D. Liu, B.P. Wang, K. Jin, Y.J. Liang, L. Wang, F.C. Wang, Y. Ren, J. Liang, Y.F. Xue, Scr. Mater. 189, 129 (2020)
DOI URL |
[209] |
B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33, 1457 (2017)
DOI URL |
[210] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 94, 17 (2015)
DOI URL |
[211] |
Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131, 323 (2017)
DOI URL |
[212] |
X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, Y.T. Zhu, Acta Mater. 112, 337 (2016)
DOI URL |
[213] |
D.W. Suh, S.J. Kim, Scr. Mater. 126, 63 (2017)
DOI URL |
[214] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84, 229 (2015)
DOI URL |
[215] |
Y. Zheng, R.E.A. Williams, D. Wang, R. Shi, S. Nag, P. Kami, J.M. Sosa, R. Banerjee, Y. Wang, H.L. Fraser, Acta Mater. 103, 850 (2016)
DOI URL |
[216] |
R. Kolli, A. Devaraj, Metals. 8, 506 (2018)
DOI URL |
[217] |
L. Zhang, H.M. Fu, S.F. Ge, Z.W. Zhu, H. Li, H.W. Zhang, A.M. Wang, H.F. Zhang, Mater. Charact. 142, 443 (2018)
DOI URL |
[218] | L. Wang, C. Fu, Y.D. Wu, Q.J. Wang, X.D. Hui, Y.D. Wang, Mater. Sci. Eng. A 748, 441 (2019) |
[219] | L. Wang, C. Fu, Y.D. Wu, R.G. Li, Y.D. Wang, X.D. Hui, Mater. Sci. Eng. A 763, 138147 (2019) |
[220] |
Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6, 7748 (2015)
DOI PMID |
[221] |
J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, Metals. 7, 111 (2017)
DOI URL |
[222] | Z. Wang, M.C. Gao, S.G. Ma, H.J. Yang, Z.H. Wang, M. Ziomek-Moroz, J.W. Qiao, Mater. Sci. Eng. A 645, 163 (2015) |
[223] |
H.Y. Yasuda, H. Miyamoto, K. Cho, T. Nagase, Mater. Lett. 199, 120 (2017)
DOI URL |
[224] |
S.G. Ma, J.W. Qiao, Z.H. Wang, H.J. Yang, Y. Zhang, Mater. Des. 88, 1057 (2015)
DOI URL |
[225] |
C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Mater. Lett. 184, 200 (2016)
DOI URL |
[226] |
B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Acta Mater. 142, 201 (2018)
DOI URL |
[227] |
O.N. Senkov, S.L. Semiatin, J. Alloys Compd. 649, 1110 (2015)
DOI URL |
[228] |
S. Sheikh, S. Shafeie, Q. Hu, J. Ahlström, C. Persson, J. Veselý, J. Zýka, U. Klement, S. Guo, J. Appl. Phys. 120, 164902 (2016)
DOI URL |
[229] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65, 85 (2014)
DOI URL |
[230] |
W.Q. Wu, S. Ni, Y. Liu, M. Song, J. Mater. Res. 31, 3815 (2016)
DOI URL |
[231] |
G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)
DOI URL |
[232] |
G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)
DOI URL |
[233] |
M. Karolus, E. Łągiewka, J. Alloys Compd. 367, 235 (2004)
DOI URL |
[234] |
S. Kumari, D.K. Singh, P.K. Giri, J. Nanosci. Nanotechnol. 9, 5231 (2009)
DOI URL |
[235] |
Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. 52, 4589 (2004)
DOI URL |
[236] | C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. -Engl. Lett. 32, 1053 (2019) |
[237] | X. Fan, R. Qu, Z. Zhang, Acta Metall. Sin. -Engl. Lett. 34, 1461 (2021) |
[238] | Y. Wan, J. Mo, X. Wang, Z. Zhang, B. Shen, X. Liang, Acta Metall. Sin. -Engl. Lett. 34, 1585 (2021) |
[239] | D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin. -Engl. Lett. 32, 925 (2019) |
[240] | Y. Zhang, W.Y. Wang, C. Zou, R. Bai, Y. Wu, D. Lin, J. Wang, X. Hui, X. Liang, J. Li, Acta Metall. Sin. -Engl. Lett. 34, 1492 (2021) |
[1] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[2] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[3] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[4] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[5] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[6] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[7] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[8] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[9] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[10] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[11] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[12] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[13] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[14] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[15] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||