Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (2): 326-340.DOI: 10.1007/s40195-021-01272-8
Previous Articles Next Articles
Kang Zhao1,2, Xiao-Qi Li1, Li-Wei Wang1(), Qi-Rong Yang1, Lian-Jun Cheng1, Zhong-Yu Cui2(
)
Received:
2021-01-08
Revised:
2021-04-25
Accepted:
2021-05-05
Online:
2022-02-10
Published:
2021-10-28
Contact:
Li-Wei Wang,Zhong-Yu Cui
About author:
Zhong-Yu Cui, cuizhongyu@ouc.edu.cnKang Zhao, Xiao-Qi Li, Li-Wei Wang, Qi-Rong Yang, Lian-Jun Cheng, Zhong-Yu Cui. Passivation Behavior of 2507 Super Duplex Stainless Steel in Hot Concentrated Seawater: Influence of Temperature and Seawater Concentration[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 326-340.
Add to citation manager EndNote|Ris|BibTeX
C | Si | N | Mo | Ni | Cr | P | S | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|
0.03 | 0.8 | 0.27 | 3.43 | 6.74 | 25.15 | 0.035 | 0.02 | 1.2 | Bal. |
Table 1 Chemical composition of the 2507 super duplex stainless steel (wt%)
C | Si | N | Mo | Ni | Cr | P | S | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|
0.03 | 0.8 | 0.27 | 3.43 | 6.74 | 25.15 | 0.035 | 0.02 | 1.2 | Bal. |
Phase | C | Mo | Cr | Ni |
---|---|---|---|---|
Ferrite | 1.76 | 5.23 | 27.48 | 4.97 |
Austenite | 1.45 | 2.91 | 25.46 | 7.27 |
Table 2 Elemental composition (wt%) of the two phase of 2507 SDSS
Phase | C | Mo | Cr | Ni |
---|---|---|---|---|
Ferrite | 1.76 | 5.23 | 27.48 | 4.97 |
Austenite | 1.45 | 2.91 | 25.46 | 7.27 |
Concentration | NaCl | Na2SO4 | NaHCO3 | KCl | MgCl2·6H2O | CaCl2 | KBr |
---|---|---|---|---|---|---|---|
1 time | 24.53 | 4.09 | 0.201 | 0.695 | 11.1 | 1.16 | 0.101 |
2 times | 49.06 | 8.18 | 0.402 | 1.390 | 22.2 | 2.32 | 0.202 |
3 times | 73.59 | 12.27 | 0.603 | 2.085 | 33.3 | 3.48 | 0.303 |
Table 3 Chemical composition of the concentrated artificial seawater (g/L)
Concentration | NaCl | Na2SO4 | NaHCO3 | KCl | MgCl2·6H2O | CaCl2 | KBr |
---|---|---|---|---|---|---|---|
1 time | 24.53 | 4.09 | 0.201 | 0.695 | 11.1 | 1.16 | 0.101 |
2 times | 49.06 | 8.18 | 0.402 | 1.390 | 22.2 | 2.32 | 0.202 |
3 times | 73.59 | 12.27 | 0.603 | 2.085 | 33.3 | 3.48 | 0.303 |
Fig. 2 Open circuit potential of 2507 SDSS in the artificial seawater with different concentration multiples a 1 time, b 2 times, c 3 times, the calculated terminal OCP at the end of the test d
Temperature (℃) | Corrosion potential, Ecorr (VSCE) | Oxygen evolution potential (VSCE) | Breaking potential (VSCE) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 time | 2 times | 3 times | 1 time | 2 times | 3 times | 1 time | 2 times | 3 times | |
25 | - 0.390 | - 0.313 | - 0.304 | 0.995 | 1.018 | 0.922 | |||
50 | - 0.311 | - 0.320 | - 0.321 | 0.910 | 0.904 | 0.853 | |||
75 | - 0.401 | - 0.389 | - 0.361 | 0.641 | 0.498 | 0.768 | |||
90 | - 0.502 | - 0.401 | - 0.407 | 0.273 | 0.360 | 0.262 |
Table 4 Corrosion potential and breakdown/oxygen evaluation potential of 2507 SDSS in the artificial seawater with different concentrations and temperatures
Temperature (℃) | Corrosion potential, Ecorr (VSCE) | Oxygen evolution potential (VSCE) | Breaking potential (VSCE) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 time | 2 times | 3 times | 1 time | 2 times | 3 times | 1 time | 2 times | 3 times | |
25 | - 0.390 | - 0.313 | - 0.304 | 0.995 | 1.018 | 0.922 | |||
50 | - 0.311 | - 0.320 | - 0.321 | 0.910 | 0.904 | 0.853 | |||
75 | - 0.401 | - 0.389 | - 0.361 | 0.641 | 0.498 | 0.768 | |||
90 | - 0.502 | - 0.401 | - 0.407 | 0.273 | 0.360 | 0.262 |
Fig. 4 Potentiostatic current density of 2507 SDSS in the original artificial seawater with different temperatures a and in the 75 °C seawater with different concentrations b
T (℃) | Rs (Ω cm2) | Q1 10-6(Ω-1 cm-2 sn) | n | R1 (μF cm2) | Ceff (nm) | d |
---|---|---|---|---|---|---|
25 | 8.8 | 40.9 | 0.88 | 742.2 | 14.07 | 1.96 |
50 | 6.0 | 62.4 | 0.84 | 713.6 | 14.38 | 1.92 |
75 | 4.5 | 85.3 | 0.82 | 310.9 | 15.09 | 1.83 |
90 | 4.1 | 91.7 | 0.81 | 61.48 | 13.85 | 1.99 |
Table 5 Fitted EIS parameters of 2507 super duplex stainless steel in the original artificial seawater with different temperatures
T (℃) | Rs (Ω cm2) | Q1 10-6(Ω-1 cm-2 sn) | n | R1 (μF cm2) | Ceff (nm) | d |
---|---|---|---|---|---|---|
25 | 8.8 | 40.9 | 0.88 | 742.2 | 14.07 | 1.96 |
50 | 6.0 | 62.4 | 0.84 | 713.6 | 14.38 | 1.92 |
75 | 4.5 | 85.3 | 0.82 | 310.9 | 15.09 | 1.83 |
90 | 4.1 | 91.7 | 0.81 | 61.48 | 13.85 | 1.99 |
Concentration | Rs (Ω cm2) | Q1 10-6(Ω-1 cm-2 sn) | n | R1 (kΩ cm2) | Ceff (μF cm2) | d (nm) |
---|---|---|---|---|---|---|
1 time | 4.5 | 85.3 | 0.82 | 310.9 | 15.09 | 1.83 |
2 times | 3.2 | 133.2 | 0.77 | 281.2 | 13.06 | 2.11 |
3 times | 2.9 | 150.7 | 0.76 | 50.0 | 12.79 | 2.16 |
Table 6 Fitted EIS parameters of 2507 super duplex stainless steel in the 75 ℃ seawater with different concentrations
Concentration | Rs (Ω cm2) | Q1 10-6(Ω-1 cm-2 sn) | n | R1 (kΩ cm2) | Ceff (μF cm2) | d (nm) |
---|---|---|---|---|---|---|
1 time | 4.5 | 85.3 | 0.82 | 310.9 | 15.09 | 1.83 |
2 times | 3.2 | 133.2 | 0.77 | 281.2 | 13.06 | 2.11 |
3 times | 2.9 | 150.7 | 0.76 | 50.0 | 12.79 | 2.16 |
Fig. 6 Variation of Q1 and R1 of 2507 SDSS in the original artificial seawater with different temperatures a and in the 75 °C seawater with different concentrations b
Fig. 8 Mott-Schottky plots of the passive film on 2507 SDSS in artificial seawater with 1 time a, 2 times b, 3 times c of concentration at different temperatures as well as the calculated donor densities d
Temperature (℃) | Donor density (× 1020 cm-3) | Flat band potential (VSCE) | ||||
---|---|---|---|---|---|---|
1 time | 2 times | 3 times | 1 time | 2 times | 3 times | |
25 | 5.59 | 6.32 | 7.28 | - 0.38 | - 0.38 | - 0.35 |
50 | 6.18 | 6.39 | 6.68 | - 0.39 | - 0.37 | - 0.36 |
75 | 6.32 | 6.69 | 7.75 | - 0.39 | - 0.35 | - 0.33 |
90 | 7.48 | 7.96 | 9.36 | - 0.39 | - 0.38 | - 0.32 |
Table 7 Calculated donor density and flat band potential of the passive film formed in the artificial seawater with different temperatures and concentrations
Temperature (℃) | Donor density (× 1020 cm-3) | Flat band potential (VSCE) | ||||
---|---|---|---|---|---|---|
1 time | 2 times | 3 times | 1 time | 2 times | 3 times | |
25 | 5.59 | 6.32 | 7.28 | - 0.38 | - 0.38 | - 0.35 |
50 | 6.18 | 6.39 | 6.68 | - 0.39 | - 0.37 | - 0.36 |
75 | 6.32 | 6.69 | 7.75 | - 0.39 | - 0.35 | - 0.33 |
90 | 7.48 | 7.96 | 9.36 | - 0.39 | - 0.38 | - 0.32 |
Fig. 9 Dependence of the anodic current density on the polarization time in the seawater with different concentrations a the calculated critical pitting temperature b
Fig. 11 Detailed XPS spectra of Fe 2p3/2 of the passive film formed on 2507 SDSS in the double enriched artificial seawater at 25 °C a, 50 °C b, 75 °C c, 90 °C d
Components | 25 ℃ | 50 ℃ | 75 ℃ | 90 ℃ | ||||
---|---|---|---|---|---|---|---|---|
Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | |
O2- | 530.0 | 21.1 | 530.0 | 32.1 | 530.0 | 18.2 | 529.9 | 32.1 |
OH- | 531.3 | 74.2 | 531.3 | 61.5 | 531.1 | 77.6 | 531.2 | 62.3 |
H2O | 532.7 | 4.7 | 532.7 | 6.4 | 532.7 | 4.2 | 532.7 | 5.6 |
Fe0 | 706.6 | 12.3 | 706.6 | 7.2 | 706.5 | 7.6 | 706.5 | 38.6 |
FeO | 708.8 | 15.6 | 708.8 | 16.8 | 708.8 | 12.9 | 708.8 | 25.9 |
Fe2O3 | 710.2 | 40.8 | 710.2 | 27.7 | 710.3 | 48.3 | 710.1 | 14.2 |
FeOOH | 711.2 | 5.8 | 711.1 | 31.8 | 711.2 | 17.9 | 711.1 | 13.5 |
Fe(OH)3 | 712.6 | 25.6 | 712.6 | 16.5 | 712.7 | 13.3 | 712.6 | 7.8 |
Fe(II)/Fe(III) | 0.22 | 0.22 | 0.16 | 0.73 | ||||
Cr0 | 573.7 | 10.9 | 573.7 | 10.9 | 573.7 | 9.6 | 573.7 | 10.4 |
Cr2O3 | 576.0 | 43.3 | 576.1 | 40.5 | 576.0 | 46.1 | 576.0 | 51.7 |
Cr(OH)3 | 577.3 | 45.7 | 577.2 | 48.6 | 577.2 | 44.5 | 577.2 | 37.8 |
Crox/Feox | 0.53 | 0.63 | 0.62 | 2.99 | ||||
Mo3d5/2 | 227.6 | 11.4 | 227.6 | 12.8 | 227.6 | 14.6 | 227.6 | 20.7 |
Mo4+3d5/2 | 229.3 | 11.1 | 229.3 | 12.8 | 229.3 | 9.1 | 229.3 | 10.5 |
Mo3d3/2 | 230.7 | 7.7 | 230.7 | 8.6 | 230.7 | 9.8 | 230.7 | 13.9 |
Mo6+3d5/2 | 232.2 | 35.2 | 232.1 | 34.3 | 232.1 | 36.1 | 232.1 | 28.7 |
Mo4+3d3/2 | 233.5 | 11.1 | 233.5 | 8.6 | 233.5 | 6.1 | 233.4 | 7.0 |
Mo6+3d3/2 | 235.1 | 23.6 | 235.1 | 22.9 | 235.1 | 24.2 | 235.1 | 19.2 |
Table 8 Parameters used for deconvolution of XPS spectra for the main species present in the passive film and atomic percent of the film composition at different temperatures
Components | 25 ℃ | 50 ℃ | 75 ℃ | 90 ℃ | ||||
---|---|---|---|---|---|---|---|---|
Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | Binding energy (eV) | Content (%) | |
O2- | 530.0 | 21.1 | 530.0 | 32.1 | 530.0 | 18.2 | 529.9 | 32.1 |
OH- | 531.3 | 74.2 | 531.3 | 61.5 | 531.1 | 77.6 | 531.2 | 62.3 |
H2O | 532.7 | 4.7 | 532.7 | 6.4 | 532.7 | 4.2 | 532.7 | 5.6 |
Fe0 | 706.6 | 12.3 | 706.6 | 7.2 | 706.5 | 7.6 | 706.5 | 38.6 |
FeO | 708.8 | 15.6 | 708.8 | 16.8 | 708.8 | 12.9 | 708.8 | 25.9 |
Fe2O3 | 710.2 | 40.8 | 710.2 | 27.7 | 710.3 | 48.3 | 710.1 | 14.2 |
FeOOH | 711.2 | 5.8 | 711.1 | 31.8 | 711.2 | 17.9 | 711.1 | 13.5 |
Fe(OH)3 | 712.6 | 25.6 | 712.6 | 16.5 | 712.7 | 13.3 | 712.6 | 7.8 |
Fe(II)/Fe(III) | 0.22 | 0.22 | 0.16 | 0.73 | ||||
Cr0 | 573.7 | 10.9 | 573.7 | 10.9 | 573.7 | 9.6 | 573.7 | 10.4 |
Cr2O3 | 576.0 | 43.3 | 576.1 | 40.5 | 576.0 | 46.1 | 576.0 | 51.7 |
Cr(OH)3 | 577.3 | 45.7 | 577.2 | 48.6 | 577.2 | 44.5 | 577.2 | 37.8 |
Crox/Feox | 0.53 | 0.63 | 0.62 | 2.99 | ||||
Mo3d5/2 | 227.6 | 11.4 | 227.6 | 12.8 | 227.6 | 14.6 | 227.6 | 20.7 |
Mo4+3d5/2 | 229.3 | 11.1 | 229.3 | 12.8 | 229.3 | 9.1 | 229.3 | 10.5 |
Mo3d3/2 | 230.7 | 7.7 | 230.7 | 8.6 | 230.7 | 9.8 | 230.7 | 13.9 |
Mo6+3d5/2 | 232.2 | 35.2 | 232.1 | 34.3 | 232.1 | 36.1 | 232.1 | 28.7 |
Mo4+3d3/2 | 233.5 | 11.1 | 233.5 | 8.6 | 233.5 | 6.1 | 233.4 | 7.0 |
Mo6+3d3/2 | 235.1 | 23.6 | 235.1 | 22.9 | 235.1 | 24.2 | 235.1 | 19.2 |
Fig. 12 Detailed XPS spectra of Cr 2p3/2 of the passive film formed on 2507 SDSS in the double enriched artificial seawater at 25 °C a, 50 °C b, 75 °C c, 90 °C d
Fig. 13 Detailed XPS spectra of Mo 3d of the passive film film formed on 2507 SDSS in the double enriched artificial seawater at 25 °C a, 50 °C b, 75 °C c, 90 °C d
Fig. 14 Detailed XPS spectra of O 1 s of the passive film formed on 2507 SDSS in the double enriched artificial seawater at 25 °C a, 50 °C b, 75 °C c, 90 °C d
Fig. 15 Fractions of the metallic oxide/hydroxide species in the passive film on 2507 SDSS after immersion in the double enriched artificial seawater for 24 h
Fig. 16 Fractions of the oxygen-containing species in the passive film on 2507 SDSS after immersion in the double enriched artificial seawater for 24 h
[1] |
W.L. Ang, A.W. Mohammad, N. Hilal, C.P. Leo, Desalination 363, 2 (2015)
DOI URL |
[2] |
S. Lattemann, T. Hopner, Desalination 220, 1 (2008)
DOI URL |
[3] |
M.A. Darwish, M.M. ElRefaee, M. AbdelJawad, Desalination 100, 35 (1995)
DOI URL |
[4] |
J.H. Ding, L. Zhang, D.P. Li, M.X. Lu, J.P. Xue, W. Zhong, J. Mater. Sci. 48, 3708 (2013)
DOI URL |
[5] |
L. Benea, N. Simionescu, L. Mardare, J. Mater. Res. Technol. 9, 13174 (2020)
DOI URL |
[6] | G. Chail, P. Kangas, in 21st European Conference on Fracture, (Ecf21) vol. 2, p. 1755 (2016) |
[7] |
J.Y. Xiong, M.Y. Tan, M. Forsyth, Desalination 327, 39 (2013)
DOI URL |
[8] |
K.S.E. Al-Malahy, T. Hodgkiess, Desalination 158, 35 (2003)
DOI URL |
[9] |
J. Olsson, Desalination 183, 217 (2005)
DOI URL |
[10] | M. Sanam, Acta Metall. Sin. Engl. Lett. 23, 161 (2010) |
[11] |
S. Ahmad, A.U. Malik, J. Appl. Electrochem. 31, 1009 (2001)
DOI URL |
[12] | D. Chalfoun, M. Chocron, M.A. Kappes, R.B. Rebak, NACE- 2017-9151, Corrosion (2017) |
[13] |
M. Rosso, A. Beltramini, M. Mazzotti, M. Morbidelli, Desalination 108, 365 (1997)
DOI URL |
[14] |
S.S. Xin, M.C. Li, Corros. Sci. 81, 96 (2014)
DOI URL |
[15] | S.S. Xin, J. Xu, F.J. Lang, M.C. Li, Adv Mater Res 299-300, 175-178 (2011) |
[16] | S. Xin, M.C. Li, J. Shen, Acta Metall. Sin. Engl. Lett. 50, 373 (2014) |
[17] | Q.S. Li, S.Z. Luo, X.T. Xing, J. Yuan, X. Liu, J.H. Wang, W.B. Hu, Acta Metall. Sin. Engl. Lett. 32, 972 (2019) |
[18] | J. Wei, C.G. Wang, X. Wei, X. Mu, X.Y. He, J.H. Dong, W. Ke, Acta Metall. Sin. Engl. Lett. 32, 900 (2019) |
[19] | J. Ninlachart, K.S. Raja, Acta Metall. Sin. Engl. Lett. 30, 352 (2017) |
[20] | D. Thierry, N. Larche, C. Leballeur, S.L. Wijesinghe, T. Zixi, Mater. Corros. 66, 453 (2015) |
[21] |
A.A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, F. Bolzoni, Corros. Sci. 159, 108160 (2019)
DOI URL |
[22] |
H. Zeng, Y. Yang, M. Zeng, M.C. Li, J. Mater. Sci. Technol. 66, 177 (2021)
DOI URL |
[23] |
S.S. Xin, M.C. Li, Russ. J. Electrochem. 50, 281 (2014)
DOI URL |
[24] |
Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, X.G. Li, Corros. Sci. 118, 31 (2017)
DOI URL |
[25] | F. Tehovnik, B. Arzensek, B. Arh, D. Skobir, B. Pirnar, B. Zuzek, Mater. Tehnol. 45, 339 (2011) |
[26] |
A.M. Hassan, A.U. Malik, Desalination 74, 157 (1989)
DOI URL |
[27] |
M. Zhu, Q. Zhang, Y.F. Yuan, S.Y. Guo, Y.Z. Huang, J. Electroanal. Chem. 864, 114072 (2020)
DOI URL |
[28] |
G. Blanco, A. Bautista, H. Takenouti, Cem. Concr. Compos. 28, 212 (2006)
DOI URL |
[29] | J. Shi, W. Sun, Corros. Sci. Prot. Technol. 23, 387 (2011) |
[30] | ASTM G150-18, ASTM International, West Conshohocken, PA, (2018) |
[31] |
G. Tranchida, F. Di Franco, S. Virtanen, M. Santamaria, Corros. Sci. 165, 108415 (2020)
DOI URL |
[32] |
M. Stefanoni, U. Angst, B. Elsener, Corros. Sci. 98, 610 (2015)
DOI URL |
[33] |
L. Wang, J. Liang, H. Li, L. Cheng, Z. Cui, Corros. Sci. 178, 109076 (2021)
DOI URL |
[34] | C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, A. Guenbour, Corros. Sci. 56, 114 (2012) |
[35] | C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, J. Walton, Electrochim. Acta 111, 552 (2013) |
[36] |
Y.X. Qiao, Y.G. Zheng, P.C. Okafor, W. Ke, Electrochim. Acta 54, 2298 (2009)
DOI URL |
[37] |
M. Gholami, M. Hoseinpoor, M.H. Moayed, Corros. Sci. 94, 156 (2015)
DOI URL |
[38] | C.A. Della Rovere, J.H. Alano, R. Silva, P.A.P Nascente, J. Otubo, S.E. Kuri, Corros. Sci. 57, 154 (2012) |
[39] |
F. Mohammadi, T. Nickchi, M.M. Attar, A. Alfantazi, Electrochim. Acta 56, 8727 (2011)
DOI URL |
[40] |
T. Chen, H. John, J. Xu, Q.H. Lu, J. Hawk, X.B. Liu, Corros. Sci. 77, 230 (2013)
DOI URL |
[41] |
M.E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pebere, A.L. Bunge, E.A. White, D.P. Riemer, M. Musiani, J. Electrochem. Soc. 160, C215 (2013)
DOI URL |
[42] |
G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)
DOI URL |
[43] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem. Soc. 157, C458 (2010)
DOI URL |
[44] | A.U. Malik, N.A. Siddiqi, S. Ahmad, I.N. Andijani, Corros. Sci. 37, 1521 (1995) |
[45] |
Y.P. Dou, S.K. Han, L.W. Wang, X. Wang, Z.Y. Cui, Corros. Sci. 165, 108405 (2020)
DOI URL |
[46] |
A. Fattah-alhosseini, M.A. Golozar, A. Saatchi, K. Raeissi, Corros. Sci. 52, 205 (2010)
DOI URL |
[47] | J.J. Dong, L. Fan, H.B. Zhang, L.K. Xu, L.L. Xue, Acta Metall. Sin. Engl. Lett. 33, 595 (2020) |
[48] | Y.Y. Yang, Y.Y. Liu, M.L. Cheng, N.W. Dai, M. Sun, J. Li, Y.M. Jiang, Acta Metall. Sin. Engl. Lett. 32, 98 (2019) |
[49] |
Z.B. Zheng, Y.G. Zheng, Corros. Sci. 112, 657 (2016)
DOI URL |
[50] |
H. Luo, C.F. Dong, X.G. Li, K. Xiao, Electrochim. Acta 64, 211 (2012)
DOI URL |
[51] | Z. Wang, Z.R. Zhang, L. Zhang, Z. Feng, M.X. Lu, Acta Metall. Sin. Engl. Lett. 33, 403 (2020) |
[52] |
J. Liu, T. Zhang, G.Z. Meng, Y.W. Shao, F.H. Wang, Corros. Sci. 91, 232 (2015)
DOI URL |
[53] |
P. Ghods, O.B. Isgor, J.R. Brown, F. Bensebaa, D. Kingston, Appl. Surf. Sci. 257, 4669 (2011)
DOI URL |
[54] |
T.J. Mesquita, E. Chauveau, M. Mantel, R.P. Nogueira, Appl. Surf. Sci. 270, 90 (2013)
DOI URL |
[55] |
L.W. Wang, Y.P. Dou, S.K. Han, J.S. Wu, Z.Y. Cui, Appl. Surf. Sci. 504, 144340 (2020)
DOI URL |
[56] |
L.A.S. Ries, M.D.C. Belo, M.G.S. Ferreira, I.L. Muller, Corros. Sci. 50, 968 (2008)
DOI URL |
[57] |
A. Lazauskas, V. Grigaliunas, A. Guobiene, M. Andrulevicius, J. Baltrusaitis, Thin Solid Films 520, 6328 (2012)
DOI URL |
[58] |
Y.L. Han, J.N. Mei, Q.J. Peng, E.H. Han, W. Ke, Corros. Sci. 112, 625 (2016)
DOI URL |
[59] | H.S. Klapper, N.S. Zadorozne, R.B. Rebak, Acta Metall. Sin. Engl. Lett. 30, 296 (2017) |
[60] | W.Y. Zhang, C.M. Wang, J.X. Ji, X.L. Feng, H.Z. Cui, Q. Song, C.Z. Zhang, Acta Metall. Sin. Engl. Lett. 33, 1331 (2020) |
[61] |
H. Luo, X.G. Li, C.F. Dong, K. Xiao, X.Q. Cheng, J. Phys. Chem. Solids 74, 691 (2013)
DOI URL |
[62] |
L. Freire, M.A. Catarino, M.I. Godinho, M.J. Ferreira, M.G.S. Ferreira, A.M.P. Simoes, M.F. Montemor, Cem. Concr. Compos. 34, 1075 (2012)
DOI URL |
[63] |
C.O.A. Olsson, D. Landolt, Electrochim. Acta 48, 1093 (2003)
DOI URL |
[64] | J.L. Tian, W. Wang, M.B. Shahzad, W. Yan, Y.Y. Shan, Z.H. Jian, K. Yang, Acta Metall. Sin. Engl. Lett. 31, 785 (2018) |
[65] |
J.B. Huang, X.Q. Wu, E.H. Han, Corros. Sci. 52, 3444 (2010)
DOI URL |
[66] | Y. Li, Z.S. Zhang, J.X. Qiu, Y.Y. He, J.J. Xiu, Q.W. Ye, Z.L. Liu, Acta Metall. Sin. Engl. Lett. 32, 733 (2019) |
[67] |
G. Lorang, M.D. Belo, A.M. Simoes, M. Ferreira, Electrochim. Acta 36, 315 (1991)
DOI URL |
[68] |
S. Jin, A. Atrens, Appl. Phys. A 50, 287 (1990)
DOI URL |
[69] | S.O. Gashti, F. Arash, M. Yousef, Acta Metall. Sin. Engl. Lett. 29, 629 (2016) |
[70] |
Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu, X.G. Li, Corros. Sci. 52, 3646 (2010)
DOI URL |
[71] |
X.R. Zhang, D.W. Shoesmith, Corros. Sci. 76, 424 (2013)
DOI URL |
[1] | Lei Fan, Juantao Zhang, Hao Wang, Yang Liu, Yu Cui, Cheng Wang, Rui Liu, Dongxiao Xu. Effects of Trace Cl-, Cu2+ and Fe3+ Ions on the Corrosion Behaviour of AA6063 in Ethylene Glycol and Water Solutions [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 285-303. |
[2] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[3] | Langlang Zhao, Shitong Wei, Dianbao Gao, Shanping Lu. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 986-996. |
[4] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[5] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[6] | Liwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824. |
[7] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[8] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[9] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[10] | Y. R. Ma, H. J. Yang, D. D. Ben, X. H. Shao, Y. Z. Tian, Q. Wang, Z. F. Zhang. Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 534-542. |
[11] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[12] | Ji-Jin Xu, Shuai Wang, Ze Chai, Chun Yu, Jun-Mei Chen, Hao Lu. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579-589. |
[13] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[14] | Honglin Yan, Zhiming Zhang, Jianqiu Wang, Bright O. Okonkwo, En-Hou Han. Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1695-1703. |
[15] | D. P. Wang, J. W. Shen, Z. Chen, F. G. Chen, P. Y. Guo, Y. X. Geng, Y. X. Wang. Relationship of Corrosion Behavior Between Single-Phase Equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn Alloys and Their Constituents in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1574-1584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||