Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (6): 793-798.DOI: 10.1007/s40195-015-0265-1
• Orginal Article • Previous Articles
Xue-Qing Wang1,2, Wei-Guang Chen3, Zhi-Li Zhu1,2(), Yu Jia1,2
Received:
2014-10-13
Revised:
2015-03-03
Online:
2015-03-20
Published:
2015-07-23
Xue-Qing Wang, Wei-Guang Chen, Zhi-Li Zhu, Yu Jia. Electronic and Magnetic Properties Modulated by Adsorption of 3d Transition Metal Atoms in Monolayer and Bilayer MoS2 Sheets[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(6): 793-798.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Top view of three different adsorption sites of monolayer and bilayer MoS2 sheets with the 4 × 4 × 1 supercell; b side view of the supercell of monolayer MoS2 sheet; c side view of the supercell of bilayer MoS2 sheet
Atom | Site | E (eV) | Bond length (Å) | Height (Å) | M (μB) |
---|---|---|---|---|---|
Sc | T Mo | -2.18 | 2.43 (3) | 1.61 | 0.88 |
T S | -1.17 | 2.42 (1) | 2.42 | 1.19 | |
H | -1.68 | 2.29 (3) | 1.39 | 0.59 | |
Ti | T Mo | -2.53 | 2.10 (3) | 1.05 | 1.81 |
T S | -1.30 | 2.23 (1) | 2.23 | 2.17 | |
H | -1.59 | 2.15 (3) | 1.13 | 1.49 | |
V | T Mo | -2.27 | 2.41 (3) | 1.31 | 2.78 |
T S | -1.02 | 2.14 (1) | 2.14 | 3.23 | |
H | -1.25 | 2.09 (3) | 1.03 | 2.57 | |
Cr | T Mo | -0.62 | 2.18 (3) | 1.19 | 4.00 |
T S | -0.12 | 2.07 (1) | 2.07 | 6.00 | |
H | -0.38 | 2.06 (3) | 0.97 | 4.00 | |
Mn | T Mo | -0.61 | 2.14 (3) | 1.12 | 3.00 |
T S | -0.11 | 2.03 (1) | 2.03 | 5.00 | |
H | -0.47 | 2.06 (3) | 0.96 | 3.00 | |
Fe | T Mo | -2.01 | 2.12 (3) | 1.04 | 2.01 |
T S | -0.61 | 1.98 (1) | 1.98 | 3.11 | |
H | -1.48 | 2.05 (3) | 0.94 | 1.99 | |
Co | T Mo | -2.72 | 2.09 (3) | 1.03 | 1.00 |
T S | -1.12 | 1.97 (1) | 1.97 | 1.32 | |
H | -2.14 | 2.06 (3) | 0.92 | 0.99 | |
Ni | T Mo | -3.29 | 2.10 (3) | 1.11 | 0.00 |
T S | -1.76 | 1.96 (1) | 1.96 | 0.00 | |
H | -2.74 | 2.09 (3) | 1.02 | 0.00 |
Table 1 Adsorption energy and structural properties for the top site of Mo atom (T Mo), the top site of S atom (T S), and the hollow site of hexagonal ring (H) investigated for 3d TM atoms adsorption in monolayer of MoS2 sheet in this work
Atom | Site | E (eV) | Bond length (Å) | Height (Å) | M (μB) |
---|---|---|---|---|---|
Sc | T Mo | -2.18 | 2.43 (3) | 1.61 | 0.88 |
T S | -1.17 | 2.42 (1) | 2.42 | 1.19 | |
H | -1.68 | 2.29 (3) | 1.39 | 0.59 | |
Ti | T Mo | -2.53 | 2.10 (3) | 1.05 | 1.81 |
T S | -1.30 | 2.23 (1) | 2.23 | 2.17 | |
H | -1.59 | 2.15 (3) | 1.13 | 1.49 | |
V | T Mo | -2.27 | 2.41 (3) | 1.31 | 2.78 |
T S | -1.02 | 2.14 (1) | 2.14 | 3.23 | |
H | -1.25 | 2.09 (3) | 1.03 | 2.57 | |
Cr | T Mo | -0.62 | 2.18 (3) | 1.19 | 4.00 |
T S | -0.12 | 2.07 (1) | 2.07 | 6.00 | |
H | -0.38 | 2.06 (3) | 0.97 | 4.00 | |
Mn | T Mo | -0.61 | 2.14 (3) | 1.12 | 3.00 |
T S | -0.11 | 2.03 (1) | 2.03 | 5.00 | |
H | -0.47 | 2.06 (3) | 0.96 | 3.00 | |
Fe | T Mo | -2.01 | 2.12 (3) | 1.04 | 2.01 |
T S | -0.61 | 1.98 (1) | 1.98 | 3.11 | |
H | -1.48 | 2.05 (3) | 0.94 | 1.99 | |
Co | T Mo | -2.72 | 2.09 (3) | 1.03 | 1.00 |
T S | -1.12 | 1.97 (1) | 1.97 | 1.32 | |
H | -2.14 | 2.06 (3) | 0.92 | 0.99 | |
Ni | T Mo | -3.29 | 2.10 (3) | 1.11 | 0.00 |
T S | -1.76 | 1.96 (1) | 1.96 | 0.00 | |
H | -2.74 | 2.09 (3) | 1.02 | 0.00 |
Fig. 2 Top view of the charge density of T Mo site adsorption of Sc a, Ti b, V c, Cr d, Mn e, Fe f, Co g, Ni h in monolayer MoS2, the isosurface value is 0.004 e/Å3
Atom | E (eV) | Bond length (Å) | Height (Å) | M (μB) |
---|---|---|---|---|
Sc | -3.37 | 2.48 (3)/2.49 (1) | 1.69/2.49 | 0.73 |
Ti | -3.84 | 2.37 (3)/2.36 (1) | 1.51/2.36 | 1.62 |
V | -3.35 | 2.26 (3)/2.25 (1) | 1.65/2.25 | 2.52 |
Cr | -1.91 | 2.22 (3)/2.25 (1) | 1.26/2.25 | 4.01 |
Mn | -1.76 | 2.19 (3)/2.26 (1) | 1.21/2.26 | 3.00 |
Fe | -3.07 | 2.18 (3)/2.23 (1) | 1.19/2.23 | 2.00 |
Co | -3.87 | 2.15 (3)/2.29 (1) | 1.15/2.29 | 0.83 |
Ni | -4.17 | 2.19 (3)/2.26 (1) | 1.22/2.26 | 0.00 |
Table 2 Adsorption energy and structural properties of TM adatoms adsorbed in the interlayer of bilayer MoS2 sheet at the favorable adsorption site B Mo
Atom | E (eV) | Bond length (Å) | Height (Å) | M (μB) |
---|---|---|---|---|
Sc | -3.37 | 2.48 (3)/2.49 (1) | 1.69/2.49 | 0.73 |
Ti | -3.84 | 2.37 (3)/2.36 (1) | 1.51/2.36 | 1.62 |
V | -3.35 | 2.26 (3)/2.25 (1) | 1.65/2.25 | 2.52 |
Cr | -1.91 | 2.22 (3)/2.25 (1) | 1.26/2.25 | 4.01 |
Mn | -1.76 | 2.19 (3)/2.26 (1) | 1.21/2.26 | 3.00 |
Fe | -3.07 | 2.18 (3)/2.23 (1) | 1.19/2.23 | 2.00 |
Co | -3.87 | 2.15 (3)/2.29 (1) | 1.15/2.29 | 0.83 |
Ni | -4.17 | 2.19 (3)/2.26 (1) | 1.22/2.26 | 0.00 |
[1] | K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005) |
[2] | T. Cheiwchanchamnangij, W.R.L. Lambrecht, Phys. Rev. B 85, 205302 (2012) |
[3] | Y. Zhou, P. Yang, H. Zu, F. Gao, X. Zu,Phys. Chem. Chem. Phys. 15, 10385(2013) |
[4] | Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, B. Huang, ACS Nano 6, 1695 (2012) |
[5] | H. Wang, L. Yu, Y.H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.J. Li, M. Dubey, J. Kong, T. Palacios,Nano Lett. 12, 4674(2012) |
[6] | H. Qiu, L.J. Pan, Z.N. Yao, J.J. Li, Y. Shi, X.R. Wang,Appl. Phys. Lett. 100, 123104(2012) |
[7] | Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am. Chem. Soc. 130, 16739(2008) |
[8] | C. Ataca, H. Sahin, E. Akturk, S. Ciraci, J. Phys. Chem. C 115, 3934 (2011) |
[9] | L. Kou, C. Tang, Y. Zhang, T. Heine, C. Chen, T. Frauenheim, J. Phys. Chem. Lett. 3, 2934(2012) |
[10] | Z. Zhang, X. Zou, V.H. Crespi, B.I. Yakobson, ACS Nano 7, 10475 (2013) |
[11] | R. Shidpour, Nanoscale 2, 1429 (2010) |
[12] | S. Mathew, K. Gopinadhan, T.K. Chan, X.J. Yu, D. Zhan, L. Cao, A. Rusydi, M.B.H. Breese, S. Dhar, Z.X. Shen, T. Venkatesan, J.T.L. Thong, Appl. Phys. Lett. 101, 102103(2012) |
[13] | S. Tongay, S.S. Varnoosfaderani, B.R. Appleton, J. Wu, A.F. Hebard,Appl. Phys. Lett. 101, 123105(2012) |
[14] | K.T. Chan, J.B. Neaton, M.L. Cohen, Phys. Rev. B 77, 235430 (2008) |
[15] | H. Sevinçli, M. Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77, 195434 (2008) |
[16] | A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, P. Pyykkö, R.M. Nieminen,Phys. Rev. Lett. 102, 126807(2009) |
[17] | B. Uchoa, T.G. Rappoport, A.H. Castro Neto, Phys. Rev. Lett. 106, 016801(2011) |
[18] | G. Kresse, J. Furthmüller,Comput. Mater. Sci. 6, 15(1996) |
[19] | G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993) |
[20] | P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) |
[21] | J.P. Perdew, K. Burke, M. Ernzerhof,Phys. Rev. Lett. 77, 3865(1996) |
[22] | R.E. Dickerson, H.B. Gray, G.P. Haight (eds.), Chemical Principles, 3rd edn. (Benjamin Cummings Publishing Co., Inc., Menlo Park, 1979) |
[23] | P. Atkins, L. Jones, Chemistry: Molecules, Matter and Change, 3rd edn. (WH Freeman and Company, New York, 1997) |
[24] | Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, U. Schwingenschlögl, Phys. Rev. B 87, 100401 (2013) |
[25] | A. Ramasubramaniam, Rev. B 87, 195201 (2013) |
[26] | R. Mishra, W. Zhou, S.J. Pennycook, S.T. Pantelides, J.C. Idrobo, Phys. Rev. B 88, 144409 (2013) |
[27] | A.N. Andriotis, M. Menon, Phys. Rev. B 90, 125304 (2014) |
[28] | T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Phys. Rev. B 64, 235305 (2001) |
[29] | Z.Y. Huang, G.L. Hao, C.Y. He, H. Yang, L. Xue, X. Qi, X.Y. Peng, J.X. Zhong, J. Appl. Phys. 114, 083706(2013) |
[1] | Jun-Xiu Chen, Xiang-Ying Zhu, Li-Li Tan, Ke Yang, Xu-Ping Su. Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg-2Zn-xGd-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 205-216. |
[2] | Xiaoqi Han, Lizhuang Yang, Naiqin Zhao, Chunnian He. Copper-Coated Graphene Nanoplatelets-Reinforced Al-Si Alloy Matrix Composites Fabricated by Stir Casting Method [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 111-124. |
[3] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[4] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[5] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[6] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[7] | Yun Zi, Jie Meng, Chaowei Zhang, Yizhou Zhou, Yutian Ding. Mechanisms of Rhenium on Wettability and Interactions Between Nickel-Base Superalloy Melt and Al2O3-Based Ceramic Material [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1021-1030. |
[8] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[9] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
[10] | Lujun Zhou, Shanwu Yang, Yi Dong, Wenhua Zhang, Jianwen Ding, Guoliang Liu, Chengjia Shang, Raja Devesh Kumar Misra. Characterization of Compactness of Rust Layers on Weathering Steels by an Adsorption/Dehydration Test of Ethanol [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 846-856. |
[11] | Xuyang Wang, Jieren Yang, Rui Hu, Zitong Gao, Jinguang Li, Hengzhi Fu. Creep-Induced Phase Instability and Microstructure Evolution of a Nearly Lamellar Ti-45Al-8.5Nb-(W, B, Y) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1591-1600. |
[12] | Zhiying Zheng, Linjiang Chai, Kang Xiang, Weijiu Huang, Yongfeng Wang, Liangliang Liu, Lin Tian. Typical Microstructural Characteristics of Ti-5Al-5Mo-5V-3Cr-1Fe Metastable β Ti Alloy Forged in α+β Region [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1601-1608. |
[13] | Fengjiao Niu, Jianghua Chen, Cuilan Wu, Jing Wu, Xiandong Xu, Pan Xie, Xiongwei Yu. Improved Properties in Relation to Fine Precipitate Microstructures Tailored by Combinatorial Processes in an Al-Cu-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1527-1534. |
[14] | Yabo Zhang, Huiling Yang, Shaoqian Lei, Shijie Zhu, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Preparation of Biodegradable Mg/β-TCP Biofunctional Gradient Materials by Friction Stir Processing and Pulse Reverse Current Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 103-114. |
[15] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||