Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (6): 787-792.DOI: 10.1007/s40195-015-0264-2
• Orginal Article • Previous Articles Next Articles
Xiao-Hui Lu1,2, Wei Li2(), Cheng-Lin Wang2, Hong-Shan Zhao2, Xue-Jun Jin1(
)
Received:
2014-12-23
Revised:
2015-02-07
Online:
2015-03-21
Published:
2015-07-23
Xiao-Hui Lu, Wei Li, Cheng-Lin Wang, Hong-Shan Zhao, Xue-Jun Jin. Effects of Sub-zero Celsius Treatment and Tempering on the Stability of Retained Austenite in Bearing Steel[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(6): 787-792.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 SEM images of the specimens after QT and QST treatments, with austenitizing temperatures of 860 and 1150 °C: a 860 °C, QT; b 1150 °C, QT; c 860 °C, QST; d 1150 °C, QST
Treatment | Fraction of RAi (vol%) | Fraction of RAf (vol%) | Elongation (%) | k |
---|---|---|---|---|
860QT | 13.2 | 9.4 | 1.64 | 20.9 |
860QST | 9.1 | 8.5 | 0.87 | 7.9 |
920QT | 23.7 | 17.9 | 0.62 | 45.4 |
920QST | 11.3 | 10.2 | 0.29 | 35.3 |
1150QT | 23.2 | F | ||
1150QST | 10.1 | F |
Table 1 Fraction and mechanical stability of RA for the specimens subjected to different treatments
Treatment | Fraction of RAi (vol%) | Fraction of RAf (vol%) | Elongation (%) | k |
---|---|---|---|---|
860QT | 13.2 | 9.4 | 1.64 | 20.9 |
860QST | 9.1 | 8.5 | 0.87 | 7.9 |
920QT | 23.7 | 17.9 | 0.62 | 45.4 |
920QST | 11.3 | 10.2 | 0.29 | 35.3 |
1150QT | 23.2 | F | ||
1150QST | 10.1 | F |
Fig. 3 a DSC curves of the QT specimen with austenitizing temperature of 860 °C at different heating rates of 5, 10, 15 and 20 °C/min; b determination of activation energy using Kissinger method
Treatment | T s (°C) | T p (°C) | Fraction of RA (vol%) | Activation energy (kJ/mol) |
---|---|---|---|---|
860QT | 251 | 276 | 13.2 | 126.4 ± 0.15 |
860QST | 252 | 275 | 9.1 | 129.3 ± 0.15 |
920QT | 256 | 283 | 23.7 | 128.6 ± 0.15 |
920QST | 255 | 285 | 11.3 | 130.2 ± 0.15 |
1150QT | 262 | 290 | 23.2 | 131.8 ± 0.15 |
1150QST | 261 | 290 | 10.1 | 136.5 ± 0.15 |
Table 2 Phase transformation starting temperature (T s) and exothermic peak temperature (T p) under heating rate of 5 °C/min and activation energy of different specimens
Treatment | T s (°C) | T p (°C) | Fraction of RA (vol%) | Activation energy (kJ/mol) |
---|---|---|---|---|
860QT | 251 | 276 | 13.2 | 126.4 ± 0.15 |
860QST | 252 | 275 | 9.1 | 129.3 ± 0.15 |
920QT | 256 | 283 | 23.7 | 128.6 ± 0.15 |
920QST | 255 | 285 | 11.3 | 130.2 ± 0.15 |
1150QT | 262 | 290 | 23.2 | 131.8 ± 0.15 |
1150QST | 261 | 290 | 10.1 | 136.5 ± 0.15 |
[1] | J.R. Davis, K.M. Mills, S.R. Lampman, Properties and Selection: Irons, Steels, and High-performance Alloys (ASM International, Materials Park, 1990), pp. 167-213 |
[2] | H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties (Butterworth-Heinemann, Oxford, 2011), pp. 36-58 |
[3] | H.K.D.H. Bhadeshia,Prog. Mater Sci. 57, 268(2012) |
[4] | E.S. Alley, R.W. Neu, Int. J. Fatigue 32, 841 (2010) |
[5] | C.H. Surberg, P. Stratton, K. Lingenhöle, Cryogenics 48, 42 (2008) |
[6] | A. Akhbarizadeh, A. Shafyei, M. Golozar,Mater. Des. 30, 3259(2009) |
[7] | D. Senthilkumar, I. Rajendran, M. Pellizzari, J. Siiriainen, J. Mater. Process. Technol. 211, 396(2011) |
[8] | M.A. Jaswin, D.M. Lal, A. Rajadurai,Tribol. Trans. 54, 341(2011) |
[9] | D. Mohan Lal, S. Renganarayanan, A. Kalanidhi, Cryogenics 41, 149 (2001) |
[10] | A. Bensely, A. Prabhakaran, D. Mohan Lal, G. Nagarajan, Cryogenics 45, 747 (2006) |
[11] | A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, J. Mater. Process. Technol. 118, 350(2001) |
[12] | D. Das, A.K. Dutta, K.K. Ray, Wear 266, 297 (2009) |
[13] | S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186, 298(2007) |
[14] | D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng., A 527, 2182 (2010) |
[15] | S. Gill, H. Singh, R. Singh, J. Singh,Int. J. Adv. Manuf. Technol. 48, 175(2010) |
[16] | S.S. Gill, J. Singh, R. Singh, H. Singh,Int. J. Adv. Manuf. Technol. 54, 59(2011) |
[17] | J.R. Patel, M. Cohen,Acta Metall. 1, 531(1953) |
[18] | K.Y. Golovchiner,Phys. Met. Metallogr. 37, 126(1974) |
[19] | M. Villa, K. Pantleon, M.A. Somers,Acta Mater. 65, 383(2014) |
[20] | M. Preciado, M. Pellizzari, J. Mater. Sci. 49, 8183(2014) |
[21] | Y. Ohmori, S. Sugisawa,Trans. Jpn. Inst. Met. 12, 170(1971) |
[22] | S. Matas, R. Hehemann, Nature 187, 685 (1960) |
[23] | Subcommittee, ASTM E8/E8M-13a, 2013 |
[24] | L. Zhao, N. Van Dijk, E. Brück, J. Sietsma, S. Van der Zwaag, Mater. Sci. Eng. A 313, 145 (2001) |
[25] | I.C. Noyan, J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York, 1987) |
[26] | Q. Feng, C. Jiang, Z. Xu,Mater. Des. 47, 68(2013) |
[27] | I. Zucato, M.C. Moreira, I.F. Machado, S.M.G. Lebrão, Mater. Res. 5, 385(2002) |
[28] | H.E. Kissinger,Analyt. Chem. 29, 1702(1957) |
[29] | E.J. Mittemeijer, J. Mater. Sci. 27, 3977(1992) |
[30] | H. Luo, J.J. Liu, B.L. Zhu, Wear 174, 57 (1994) |
[31] | K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Metall. Trans. A 23, 3085 (1992) |
[32] | J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao,Scr. Mater. 63, 815(2010) |
[33] | M. Van Rooyen, E. Mittemeijer,Scr. Metall. 16, 1255(1982) |
[34] | E. Mittemeijer, J. Mater. Sci. 27, 3977(1992) |
[35] | M. Villa, F.B. Grumsen, K. Pantleon, M.A. Somers,Scr. Mater. 67, 621(2012) |
[36] | G. Thomas, Metall. Trans. A 9, 439 (1978) |
[37] | V.Y. Tomita, T. Okawa, Mater. Sci. Eng. A 172, 145 (1993) |
[38] | H.S. Yang, H. Bhadeshia,Scr. Mater. 60, 493(2009) |
[39] | I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004) |
[40] | K. Nakazawa, G. Krauss, Metall. Trans. A 9, 681 (1978) |
[41] | G. Krauss, Mater. Sci. Eng. A 273, 40 (1999) |
[42] | X. Xiong, B. Chen, M. Huang, J. Wang, L. Wang,Scr. Mater. 68, 321(2013) |
[43] | P. Morra, A. Böttger, E. Mittemeijer, J. Therm. Anal. Calorim. 64, 905(2001) |
[44] | W. Shi, L. Li, B.C. De Cooman, P. Wollants, C.X. Yang, J. Iron. Steel Res. Int. 15, 61(2008) |
[45] | W. Batz, R.F. Mechl, Trans. AIME 188, 553 (1950) |
[1] | Xiaosheng Zhou, Hao Chen, Chenxi Liu, Yongchang Liu. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 187-195. |
[2] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[3] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[4] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[5] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. |
[6] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[7] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[8] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[9] | Bang Dou, Hui Zhang, Jia-Hao Zhu, Ben-Qi Xu, Zi-Yi Zhou, Ji-Li Wu. Uniformly Dispersed Carbide Reinforcements in the Medium-Entropy High-Speed Steel Coatings by Wide-Band Laser Cladding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1145-1150. |
[10] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[11] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[12] | Cong-Yu Zhang, Hao Chen, Jia-Ning Zhu, Chi Zhang, Zhi-Gang Yang. A New Kinetic Mode During the Austenite-to-Ferrite Transformation in Fe-Mn and Fe-Mn-Mo Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 975-980. |
[13] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[14] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[15] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||