Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (8): 1077-1090.DOI: 10.1007/s40195-020-01002-6
Previous Articles Next Articles
Yuan Yu1,2, Peiying Shi1, Kai Feng3, Jiongjie Liu1, Jun Cheng1, Zhuhui Qiao1,2(), Jun Yang1, Jinshan Li4(
), Weimin Liu1
Received:
2019-10-15
Revised:
2019-11-26
Online:
2020-08-10
Published:
2020-08-06
Contact:
Zhuhui Qiao,Jinshan Li
Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 XRD patterns from the AlCoCrFeNiTi0.5 alloy in the as-cast condition after different heat treatments: a whole spectrum; b, c enlargement of the section between 40° to 50°
Fig. 2 Backscattered electron images (BEI) at low magnification from the AlCoCrFeNiTi0.5 alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Fig. 3 Backscattered electron images (BEI) at high magnification from the AlCoCrFeNiTi0.5 alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Alloy | Region | Al | Co | Cr | Fe | Ni | Ti |
---|---|---|---|---|---|---|---|
Nominal | 18.18 | 18.18 | 18.18 | 18.18 | 18.18 | 9.09 | |
600 °C | DC | 23.21 | 17.09 | 13.23 | 15.62 | 20.53 | 10.32 |
ID-Matrix (1) | 6.83 | 17.84 | 33.16 | 27.37 | 10.49 | 4.31 | |
ID-Shell (2) | 22.71 | 18.16 | 13.57 | 15.71 | 20.28 | 9.57 | |
700 °C | DC | 22.33 | 17.71 | 13.55 | 15.31 | 21.13 | 9.97 |
ID-Matrix | 7.13 | 17.91 | 32.35 | 27.15 | 10.89 | 4.57 | |
ID-Shell | 22.42 | 18.11 | 13.47 | 15.73 | 20.92 | 9.35 | |
800 °C | DC | 22.91 | 18.05 | 14.05 | 15.42 | 19.78 | 9.79 |
ID-Matrix | 7.85 | 18.02 | 30.79 | 26.93 | 11.05 | 5.36 | |
ID-Shell | 22.27 | 17.46 | 13.78 | 15.99 | 20.54 | 10.03 | |
900 °C | DC | 22.67 | 18.13 | 13.25 | 15.18 | 20.62 | 10.15 |
ID-Matrix | 8.78 | 17.86 | 29.13 | 26.15 | 12.24 | 5.84 | |
ID-Shell | 21.95 | 18.06 | 10.42 | 13.39 | 24.61 | 11.57 | |
1000 °C | DC-Matrix | 20.91 | 17.75 | 10.45 | 13.67 | 24.38 | 12.84 |
ID | 9.63 | 18.04 | 27.73 | 24.92 | 13.41 | 6.27 | |
1100 °C | DC-Matrix | 20.45 | 17.34 | 11.52 | 14.30 | 23.95 | 12.44 |
DC-White cells | 13.57 | 18.02 | 25.76 | 23.50 | 16.76 | 6.39 | |
ID | 10.65 | 17.81 | 26.18 | 24.43 | 14.57 | 6.35 |
Table 1 Chemical compositions (in at.%) of different regions of AlCoCrFeNiTi0.5 alloys heat treated at different temperatures
Alloy | Region | Al | Co | Cr | Fe | Ni | Ti |
---|---|---|---|---|---|---|---|
Nominal | 18.18 | 18.18 | 18.18 | 18.18 | 18.18 | 9.09 | |
600 °C | DC | 23.21 | 17.09 | 13.23 | 15.62 | 20.53 | 10.32 |
ID-Matrix (1) | 6.83 | 17.84 | 33.16 | 27.37 | 10.49 | 4.31 | |
ID-Shell (2) | 22.71 | 18.16 | 13.57 | 15.71 | 20.28 | 9.57 | |
700 °C | DC | 22.33 | 17.71 | 13.55 | 15.31 | 21.13 | 9.97 |
ID-Matrix | 7.13 | 17.91 | 32.35 | 27.15 | 10.89 | 4.57 | |
ID-Shell | 22.42 | 18.11 | 13.47 | 15.73 | 20.92 | 9.35 | |
800 °C | DC | 22.91 | 18.05 | 14.05 | 15.42 | 19.78 | 9.79 |
ID-Matrix | 7.85 | 18.02 | 30.79 | 26.93 | 11.05 | 5.36 | |
ID-Shell | 22.27 | 17.46 | 13.78 | 15.99 | 20.54 | 10.03 | |
900 °C | DC | 22.67 | 18.13 | 13.25 | 15.18 | 20.62 | 10.15 |
ID-Matrix | 8.78 | 17.86 | 29.13 | 26.15 | 12.24 | 5.84 | |
ID-Shell | 21.95 | 18.06 | 10.42 | 13.39 | 24.61 | 11.57 | |
1000 °C | DC-Matrix | 20.91 | 17.75 | 10.45 | 13.67 | 24.38 | 12.84 |
ID | 9.63 | 18.04 | 27.73 | 24.92 | 13.41 | 6.27 | |
1100 °C | DC-Matrix | 20.45 | 17.34 | 11.52 | 14.30 | 23.95 | 12.44 |
DC-White cells | 13.57 | 18.02 | 25.76 | 23.50 | 16.76 | 6.39 | |
ID | 10.65 | 17.81 | 26.18 | 24.43 | 14.57 | 6.35 |
Fig. 6 XRD patterns from the AlCoCrFeNiCu alloy in the as-cast condition after different heat treatments: a whole spectrum; b, c enlargement of the section between 40° to 50°
Fig. 7 Backscattered electron images (BEI) at low magnification from the AlCoCrFeNiCu alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Fig. 8 Backscattered electron images (BEI) at high magnification from the AlCoCrFeNiCu alloy after heat treatments at different temperatures: a 600 °C, b 700 °C, c 800 °C, d 900 °C, e 1000 °C, f 1100 °C
Alloy | Region | Al | Co | Cr | Fe | Ni | Cu |
---|---|---|---|---|---|---|---|
Nominal | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | |
600 | DC | 15.69 | 18.17 | 18.83 | 18.55 | 14.99 | 12.76 |
ID | 11.09 | 5.51 | 4.27 | 5.59 | 10.44 | 63.09 | |
700 | DC | 14.65 | 17.93 | 21.02 | 21.39 | 14.61 | 10.41 |
ID | 10.60 | 6.52 | 4.37 | 6.18 | 10.06 | 58.63 | |
800 | DC | 14.15 | 18.98 | 19.01 | 19.66 | 15.47 | 12.73 |
ID-Matrix | 10.85 | 7.37 | 4.39 | 6.53 | 10.73 | 60.14 | |
900 | DC-Matrix | 10.41 | 18.92 | 24.91 | 24.31 | 13.26 | 7.18 |
DC-Precipitate(1) | 20.81 | 17.49 | 13.47 | 14.01 | 21.87 | 12.35 | |
ID-Matrix (2) | 8.78 | 8.14 | 6.99 | 7.77 | 9.01 | 58.31 | |
ID-Precipitate(3) | 19.99 | 11.73 | 10.82 | 12.03 | 20.23 | 25.21 | |
1000 | DC-Matrix | 15.06 | 19.95 | 20.15 | 19.72 | 15.84 | 9.28 |
DC-Precipitate(6) | 20.20 | 14.55 | 10.96 | 12.31 | 20.81 | 20.17 | |
ID-Matrix | 11.59 | 11.40 | 11.88 | 11.74 | 10.45 | 42.93 | |
ID-Precipitate | 20.14 | 12.39 | 10.04 | 11.73 | 20.90 | 24.80 | |
1100 | Matrix-7 | 19.25 | 11.98 | 9.65 | 10.70 | 24.51 | 23.90 |
Matrix-8 | 21.08 | 17.19 | 16.12 | 16.23 | 20.34 | 9.04 | |
Precipitate-9 | 7.42 | 18.10 | 30.26 | 28.59 | 10.01 | 5.63 | |
Precipitate-10 | 6.21 | 6.80 | 4.30 | 7.27 | 7.28 | 68.14 |
Table 2 Chemical compositions (in at.%) of different regions of AlCoCrFeNiCu alloys heat treated at different temperatures
Alloy | Region | Al | Co | Cr | Fe | Ni | Cu |
---|---|---|---|---|---|---|---|
Nominal | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | 16.66 | |
600 | DC | 15.69 | 18.17 | 18.83 | 18.55 | 14.99 | 12.76 |
ID | 11.09 | 5.51 | 4.27 | 5.59 | 10.44 | 63.09 | |
700 | DC | 14.65 | 17.93 | 21.02 | 21.39 | 14.61 | 10.41 |
ID | 10.60 | 6.52 | 4.37 | 6.18 | 10.06 | 58.63 | |
800 | DC | 14.15 | 18.98 | 19.01 | 19.66 | 15.47 | 12.73 |
ID-Matrix | 10.85 | 7.37 | 4.39 | 6.53 | 10.73 | 60.14 | |
900 | DC-Matrix | 10.41 | 18.92 | 24.91 | 24.31 | 13.26 | 7.18 |
DC-Precipitate(1) | 20.81 | 17.49 | 13.47 | 14.01 | 21.87 | 12.35 | |
ID-Matrix (2) | 8.78 | 8.14 | 6.99 | 7.77 | 9.01 | 58.31 | |
ID-Precipitate(3) | 19.99 | 11.73 | 10.82 | 12.03 | 20.23 | 25.21 | |
1000 | DC-Matrix | 15.06 | 19.95 | 20.15 | 19.72 | 15.84 | 9.28 |
DC-Precipitate(6) | 20.20 | 14.55 | 10.96 | 12.31 | 20.81 | 20.17 | |
ID-Matrix | 11.59 | 11.40 | 11.88 | 11.74 | 10.45 | 42.93 | |
ID-Precipitate | 20.14 | 12.39 | 10.04 | 11.73 | 20.90 | 24.80 | |
1100 | Matrix-7 | 19.25 | 11.98 | 9.65 | 10.70 | 24.51 | 23.90 |
Matrix-8 | 21.08 | 17.19 | 16.12 | 16.23 | 20.34 | 9.04 | |
Precipitate-9 | 7.42 | 18.10 | 30.26 | 28.59 | 10.01 | 5.63 | |
Precipitate-10 | 6.21 | 6.80 | 4.30 | 7.27 | 7.28 | 68.14 |
Element (atomic radius) | Al(1.82) | Co(1.67) | Cr(1.85) | Fe(1.72) | Ni(1.62) | Ti(2.00) | Cu(1.57) |
---|---|---|---|---|---|---|---|
Al | - 19 | - 10 | - 11 | - 22 | - 30 | - 1 | |
Co | - 4 | - 1 | 0 | - 28 | 6 | ||
Cr | - 1 | - 7 | - 7 | 12 | |||
Fe | - 2 | - 17 | 13 | ||||
Ni | - 35 | 4 |
Table 3 Atom size (?) and the mixing enthalpy (kJ/mol) of different elements
Element (atomic radius) | Al(1.82) | Co(1.67) | Cr(1.85) | Fe(1.72) | Ni(1.62) | Ti(2.00) | Cu(1.57) |
---|---|---|---|---|---|---|---|
Al | - 19 | - 10 | - 11 | - 22 | - 30 | - 1 | |
Co | - 4 | - 1 | 0 | - 28 | 6 | ||
Cr | - 1 | - 7 | - 7 | 12 | |||
Fe | - 2 | - 17 | 13 | ||||
Ni | - 35 | 4 |
[1] |
Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296 (2019)
DOI URL |
[2] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016)
DOI URL |
[3] |
H. Zhang, B. Dou, H. Tang, Y. He, S. Guo, Mater. Des. 159, 224 (2018)
DOI URL |
[4] | Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35, 902 (2019) |
[5] | Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gaob, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35, 369 (2019) |
[6] | C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. (Engl. Lett.) 32, 1053 (2019) |
[7] | M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014) |
[8] | S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, J. Alloy. Compd. 795, 19 (2019) |
[9] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014) |
[10] | T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017) |
[11] |
Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 91, 124 (2017)
DOI URL |
[12] | L. Jiang, Y.P. Lu, M. Song, C. Lu, K. Sun, Z.Q. Cao, T.M. Wang, F. Gao, L.M. Wang, Scr. Mater. 165, 128 (2019) |
[13] | D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 925 (2019) |
[14] | J.B. Cheng, D. Liu, X.B. Liang, B.S. Xu, Acta Metall. Sin. Engl. Lett. 27, 1031 (2014) |
[15] | L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, J. Mater. Sci. Technol. 35, 917 (2019) |
[16] | Y. Yu, J. Wang, J.S. Li, J. Yang, H.C. Kou, W.M. Liu, J. Mater. Sci. Technol. 32, 470 (2016) |
[17] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019)
DOI URL |
[18] |
Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)
URL PMID |
[19] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)
URL PMID |
[20] | Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 5 (2014) |
[21] | Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017) |
[22] | X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141, 59 (2017) |
[23] | Y.P. Lu, X.X. Gao, Y. Dong, T.M. Wang, H.L. Chen, H.H. Mao, Y.H. Zhao, H. Jiang, Z.Q. Cao, T.J. Li, S. Guo, Nanoscale 10, 1912 (2018) |
[24] |
J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Mater. Des. 180, 107910 (2019)
DOI URL |
[25] | Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 18 (2007) |
[26] | C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36a, 1263 (2005) |
[27] | Z.J.W.X.L. Shang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019) |
[28] | Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 32, 932 (2019) |
[29] |
T.D. Huang, H. Jiang, Y.P. Lu, T.M. Wang, T.J. Li, Appl. Phys. A-Mater. 125, 180 (2019)
DOI URL |
[30] | A. Munitz, S. Salhov, G. Guttmann, N. Derimow, M. Nahmany, Mater. Sci. Eng. A 742, 1 (2019) |
[31] | J.C. Rao, H.Y. Diao, V. Ocelik, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw,, J.T.M. De Hosson, Acta Mater. 131, 206 (2017) |
[32] | A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, T. Shanmugasundaram, Scr. Mater. 161, 28 (2019) |
[33] | Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, Y.B. Hu, X.G. Wang, J. Alloy. Compd. 806, 901 (2019) |
[34] | Y. Yu, J. Wang, J. Yang, Z.H. Qiao, H.T. Duan, J.S. Li, J. Li, W.M. Liu, Tribol. Int. 131, 24 (2019) |
[35] | Y. Yu, J. Wang, J.S. Li, H.C. Kou, W.M. Liu, Mater. Lett. 138, 78 (2015) |
[36] | M. Chen, L. Lan, X.H. Shi, H.J. Yang, M. Zhang, J.W. Qiao, J. Alloy. Compd. 777, 180 (2019) |
[37] | A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloy. Compd. 683, 221 (2016) |
[38] | K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4487 (2013) |
[39] |
A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K.G. Pradeep, R.C. Mallik, B.S. Murty, U.V. Varadaraju, Sci. Rep. 9, 5331 (2019)
URL PMID |
[40] | B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, 1st edn. (Butterworth-Heinemann, Boston, 2014) |
[41] | F.J. Wang, Y. Zhang, G.L. Chen, J. Alloy. Compd. 478, 321 (2009) |
[42] | C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160, 158 (2018) |
[43] | S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59, 182 (2011) |
[44] |
A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Mater. Sci. Eng. A 714, 146 (2018)
DOI URL |
[45] |
D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, J. Cataldo, J. Appl. Phys. 70, 3052 (1991)
DOI URL |
[46] |
A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)
DOI URL |
[47] |
Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Mater. Lett. 62, 2673 (2008)
DOI URL |
[48] |
J.M. Zhu, J.L. Meng, J.L. Liang, Rare Met 35, 385 (2016)
DOI URL |
[49] |
Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, G.L. Chen, J. Alloy. Compd. 466, 201 (2008)
DOI URL |
[50] | A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Metall. Mater. Trans. A 714, 146 (2018) |
[51] |
S. Liu, M.C. Gao, P.K. Liaw, Y. Zhang, J. Alloy Compd. 619, 610 (2015)
DOI URL |
[52] |
S.Q. Xia, M.C. Gao, Y. Zhang, Mater. Chem. Phys. 210, 213 (2018)
DOI URL |
[53] |
D. Li, Y. Zhang, Intermetallics 70, 24 (2016)
DOI URL |
[54] |
D. Li, M.C. Gao, J.A. Hawk, Y. Zhang, J. Alloy. Compd. 778, 23 (2019)
DOI URL |
[1] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[2] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[3] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[4] | Hui Jiang, Tian-Dang Huang, Chao Su, Hong-Bin Zhang, Kai-Ming Han, Sheng-Xue Qin. Microstructure and Mechanical Behavior of CrFeNi2V0.5Wx (x = 0, 0.25) High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1117-1123. |
[5] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[6] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[7] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[8] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[9] | Shikai Wu, Wei Gao, Tao Lu, Ye Pan. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110. |
[10] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[11] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[12] | Rui-Xuan Li, Jun-Wei Qiao, Peter K. Liaw, Yong Zhang. Preternatural Hexagonal High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1033-1045. |
[13] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[14] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[15] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||