Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 102-118.DOI: 10.1007/s40195-023-01602-y
Previous Articles Next Articles
Yu-Hang Chu1, Liang-Yu Chen1,2(), Bo-Yuan Qin1, Wenbin Gao1,2, Fanmin Shang1, Hong-Yu Yang3(
), Lina Zhang1, Peng Qin4, Lai-Chang Zhang4(
)
Received:
2023-06-12
Revised:
2023-07-22
Accepted:
2023-07-27
Online:
2024-01-10
Published:
2023-09-19
Contact:
Liang-Yu Chen, Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Microstructural features of L-PBF-produced TC4 sample: a XRD pattern, b optical microstructure, c bright-field TEM image, d dark-field TEM image (inset is the selected area diffraction pattern in the dashed circle)
Fig. 2 OCP curves of L-PBF-produced TC4 in Hank′s solutions at 37 °C with different pH values controlled by lactic acid. Ti7, Ti5, and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
Fig. 3 Electrochemical impedance spectroscopies of L-PBF-produced TC4 samples in Hank’s solutions with different lactic acid concentrations at 37 °C: a Nyquist plots, b Bode plots. Inset in a is the equivalent electrical circuit fitting the EIS results. Ti7, Ti5, and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5, and 3
Sample | Rs (Ω cm2) | CPE × 10−6 (Ω−1 sn cm−2) | n | Rct (MΩ cm2) |
---|---|---|---|---|
Ti7 | 21.07 ± 1.83 | 29.38 ± 1.93 | 0.90 ± 0.02 | 1.07 ± 0.24 |
Ti5 | 20.94 ± 1.75 | 27.56 ± 2.87 | 0.88 ± 0.02 | 0.75 ± 0.15 |
Ti3 | 18.18 ± 1.89 | 23.98 ± 2.32 | 0.90 ± 0.01 | 0.22 ± 0.14 |
Table 1 Fitting results of electrochemical impedance spectroscopies for L-PBF-produced TC4 in Hank′s solutions with and without lactic acid
Sample | Rs (Ω cm2) | CPE × 10−6 (Ω−1 sn cm−2) | n | Rct (MΩ cm2) |
---|---|---|---|---|
Ti7 | 21.07 ± 1.83 | 29.38 ± 1.93 | 0.90 ± 0.02 | 1.07 ± 0.24 |
Ti5 | 20.94 ± 1.75 | 27.56 ± 2.87 | 0.88 ± 0.02 | 0.75 ± 0.15 |
Ti3 | 18.18 ± 1.89 | 23.98 ± 2.32 | 0.90 ± 0.01 | 0.22 ± 0.14 |
Fig. 4 Potentiodynamic polarization curves of L-PBF-produced TC4 samples in Hank’s solutions with different lactic acid concentrations at 37 °C. Ti7, Ti5, and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
Sample | Icorr (µA cm−2) | Ecorr (V) | Epp (V) | Corrosion rate × 10−5 (mm y−1) |
---|---|---|---|---|
Ti7 | 0.12 ± 0.02 | − 0.49 ± 0.06 | − 0.043 ± 0.05 | 0.33 ± 0.11 |
Ti5 | 0.15 ± 0.03 | − 0.37 ± 0.06 | 0.081 ± 0.07 | 0.43 ± 0.14 |
Ti3 | 0.18 ± 0.03 | − 0.29 ± 0.08 | 0.139 ± 0.06 | 0.49 ± 0.16 |
Table 2 Fitted potentiodynamic polarization results of Ti7, Ti5 and Ti3 samples in Hank’s solution at 37 ℃
Sample | Icorr (µA cm−2) | Ecorr (V) | Epp (V) | Corrosion rate × 10−5 (mm y−1) |
---|---|---|---|---|
Ti7 | 0.12 ± 0.02 | − 0.49 ± 0.06 | − 0.043 ± 0.05 | 0.33 ± 0.11 |
Ti5 | 0.15 ± 0.03 | − 0.37 ± 0.06 | 0.081 ± 0.07 | 0.43 ± 0.14 |
Ti3 | 0.18 ± 0.03 | − 0.29 ± 0.08 | 0.139 ± 0.06 | 0.49 ± 0.16 |
Fig. 5 Potentiostatic polarization curves and corresponding double logarithmic curves from 0.6 to 1 V: a, b Ti7, c, d Ti5 and e, f Ti3. Insets are enlarged images from 1500 to 1800 s. Ti7, Ti5 and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
Fig. 6 Electrochemical impedance spectroscopy for the L-PBF-produced TC4 after potentiostatic polarization with different pH values at 37 °C: a, c and e Nyquist diagram, b, d and f Bode diagram. Ti7, Ti5 and Ti3 indicate the samples in Hank’s solutions with pH values of 7, 5 and 3
Sample | Potential | Rs | CPE1 × 10−6 | n1 | Rf | CPE2 × 10−5 | n2 | Rct |
---|---|---|---|---|---|---|---|---|
(V) | (Ω cm2) | (Ω−1 sn cm−2) | (kΩ cm2) | (Ω−1 sn cm−2) | (MΩ cm2) | |||
Ti7 | 0.6 | 20.15 ± 0.84 | 10.95 ± 0.53 | 0.90 ± 0.03 | 10.21 ± 0.62 | 1.05 ± 0.49 | 0.76 ± 0.12 | 1.16 ± 0.12 |
0.7 | 21.02 ± 1.05 | 4.44 ± 0.71 | 0.96 ± 0.02 | 12.39 ± 0.57 | 5.12 ± 0.53 | 0.86 ± 0.09 | 1.92 ± 0.28 | |
0.8 | 19.02 ± 1.59 | 8.62 ± 0.05 | 0.86 ± 0.08 | 13.66 ± 0.74 | 1.56 ± 0.82 | 0.97 ± 0.01 | 2.23 ± 0.35 | |
0.9 | 23.34 ± 0.83 | 2.52 ± 0.26 | 0.72 ± 0.13 | 20.57 ± 0.35 | 5.05 ± 0.07 | 0.96 ± 0.01 | 2.46 ± 0.76 | |
1.0 | 22.81 ± 2.84 | 1.19 ± 0.08 | 0.73 ± 0.07 | 25.23 ± 0.28 | 6.37 ± 0.79 | 0.94 ± 0.02 | 2.81 ± 0.69 | |
Ti5 | 0.6 | 16.38 ± 0.24 | 1.13 ± 0.45 | 0.91 ± 0.04 | 5.48 ± 0.43 | 2.85 ± 0.63 | 0.93 ± 0.03 | 1.06 ± 0.35 |
0.7 | 13.21 ± 1.52 | 2.51 ± 0.37 | 0.73 ± 0.15 | 8.68 ± 0.62 | 8.75 ± 0.49 | 0.92 ± 0.04 | 1.41 ± 0.29 | |
0.8 | 14.55 ± 1.03 | 1.83 ± 0.79 | 0.76 ± 0.12 | 9.20 ± 0.84 | 7.82 ± 0.73 | 0.93 ± 0.03 | 1.75 ± 0.17 | |
0.9 | 13.49 ± 2.26 | 2.26 ± 0.93 | 0.77 ± 0.07 | 11.72 ± 0.38 | 6.67 ± 0.39 | 0.94 ± 0.02 | 2.38 ± 0.44 | |
1.0 | 15.84 ± 0.63 | 3.55 ± 1.04 | 0.83 ± 0.11 | 15.24 ± 0.21 | 4.16 ± 0.27 | 0.96 ± 0.01 | 2.73 ± 0.55 | |
Ti3 | 0.6 | 14.76 ± 0.14 | 4.01 ± 1.43 | 0.64 ± 0.07 | 9.32 ± 0.46 | 5.14 ± 0.23 | 0.92 ± 0.02 | 0.91 ± 0.20 |
0.7 | 12.29 ± 0.46 | 3.57 ± 0.74 | 0.70 ± 0.06 | 10.21 ± 0.73 | 9.31 ± 0.53 | 0.93 ± 0.05 | 1.15 ± 0.32 | |
0.8 | 10.68 ± 0.96 | 1.98 ± 0.69 | 0.73 ± 0.04 | 12.36 ± 0.26 | 8.08 ± 0.39 | 0.94 ± 0.03 | 1.59 ± 0.27 | |
0.9 | 11.84 ± 1.65 | 2.10 ± 1.26 | 0.73 ± 0.02 | 13.51 ± 0.07 | 6.29 ± 0.58 | 0.94 ± 0.01 | 1.81 ± 0.17 | |
1.0 | 15.4 ± 2.53 | 8.89 ± 0.37 | 0.92 ± 0.14 | 16.32 ± 0.49 | 4.87 ± 0.74 | 0.89 ± 0.08 | 2.42 ± 0.52 |
Table 3 Summarized fitting EDS results from Fig. 6
Sample | Potential | Rs | CPE1 × 10−6 | n1 | Rf | CPE2 × 10−5 | n2 | Rct |
---|---|---|---|---|---|---|---|---|
(V) | (Ω cm2) | (Ω−1 sn cm−2) | (kΩ cm2) | (Ω−1 sn cm−2) | (MΩ cm2) | |||
Ti7 | 0.6 | 20.15 ± 0.84 | 10.95 ± 0.53 | 0.90 ± 0.03 | 10.21 ± 0.62 | 1.05 ± 0.49 | 0.76 ± 0.12 | 1.16 ± 0.12 |
0.7 | 21.02 ± 1.05 | 4.44 ± 0.71 | 0.96 ± 0.02 | 12.39 ± 0.57 | 5.12 ± 0.53 | 0.86 ± 0.09 | 1.92 ± 0.28 | |
0.8 | 19.02 ± 1.59 | 8.62 ± 0.05 | 0.86 ± 0.08 | 13.66 ± 0.74 | 1.56 ± 0.82 | 0.97 ± 0.01 | 2.23 ± 0.35 | |
0.9 | 23.34 ± 0.83 | 2.52 ± 0.26 | 0.72 ± 0.13 | 20.57 ± 0.35 | 5.05 ± 0.07 | 0.96 ± 0.01 | 2.46 ± 0.76 | |
1.0 | 22.81 ± 2.84 | 1.19 ± 0.08 | 0.73 ± 0.07 | 25.23 ± 0.28 | 6.37 ± 0.79 | 0.94 ± 0.02 | 2.81 ± 0.69 | |
Ti5 | 0.6 | 16.38 ± 0.24 | 1.13 ± 0.45 | 0.91 ± 0.04 | 5.48 ± 0.43 | 2.85 ± 0.63 | 0.93 ± 0.03 | 1.06 ± 0.35 |
0.7 | 13.21 ± 1.52 | 2.51 ± 0.37 | 0.73 ± 0.15 | 8.68 ± 0.62 | 8.75 ± 0.49 | 0.92 ± 0.04 | 1.41 ± 0.29 | |
0.8 | 14.55 ± 1.03 | 1.83 ± 0.79 | 0.76 ± 0.12 | 9.20 ± 0.84 | 7.82 ± 0.73 | 0.93 ± 0.03 | 1.75 ± 0.17 | |
0.9 | 13.49 ± 2.26 | 2.26 ± 0.93 | 0.77 ± 0.07 | 11.72 ± 0.38 | 6.67 ± 0.39 | 0.94 ± 0.02 | 2.38 ± 0.44 | |
1.0 | 15.84 ± 0.63 | 3.55 ± 1.04 | 0.83 ± 0.11 | 15.24 ± 0.21 | 4.16 ± 0.27 | 0.96 ± 0.01 | 2.73 ± 0.55 | |
Ti3 | 0.6 | 14.76 ± 0.14 | 4.01 ± 1.43 | 0.64 ± 0.07 | 9.32 ± 0.46 | 5.14 ± 0.23 | 0.92 ± 0.02 | 0.91 ± 0.20 |
0.7 | 12.29 ± 0.46 | 3.57 ± 0.74 | 0.70 ± 0.06 | 10.21 ± 0.73 | 9.31 ± 0.53 | 0.93 ± 0.05 | 1.15 ± 0.32 | |
0.8 | 10.68 ± 0.96 | 1.98 ± 0.69 | 0.73 ± 0.04 | 12.36 ± 0.26 | 8.08 ± 0.39 | 0.94 ± 0.03 | 1.59 ± 0.27 | |
0.9 | 11.84 ± 1.65 | 2.10 ± 1.26 | 0.73 ± 0.02 | 13.51 ± 0.07 | 6.29 ± 0.58 | 0.94 ± 0.01 | 1.81 ± 0.17 | |
1.0 | 15.4 ± 2.53 | 8.89 ± 0.37 | 0.92 ± 0.14 | 16.32 ± 0.49 | 4.87 ± 0.74 | 0.89 ± 0.08 | 2.42 ± 0.52 |
Fig. 7 Mott-Schottky curves of passive films on samples under different concentrations of lactic acid: a Ti7, b Ti5, c Ti3. Ti7, Ti5 and Ti3 indicate the samples in Hank’s solutions with pH values of 7, 5, 3
Fig. 8 Semiconductive properties of passive films on Ti7, Ti5 and Ti3 after potentiostatic polarization at 0.6-1 V: a donor densities, b thicknesses. Ti7, Ti5 and Ti3 indicate the samples in Hank’s solutions with pH values of 7, 5, 3
Fig. 9 Concentrations of Ti, Al, V, Ca and P ions from potentiostatic polarized samples under 0.6 V and 24 h immersion tests in Hank’s solution: a Ti, Al and V, b Ca and P. Ti7, Ti5 and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
Fig. 10 Morphologies of potentiostatic polarized samples under 0.6 V and 24 h immersion tests: a Ti7, b Ti5, c Ti3. Ti7, Ti5 and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
Feature position | Ti | Al | V | O |
---|---|---|---|---|
A | 82.9 | 5.1 | 3.8 | 8.2 |
B | 84.0 | 5.2 | 3.5 | 7.3 |
C | 83.3 | 5.4 | 4 | 7.3 |
D | 85.2 | 5.0 | 3.7 | 6.1 |
Table 4 Chemical compositions of feature positions marked in Fig. 10 (in at.%)
Feature position | Ti | Al | V | O |
---|---|---|---|---|
A | 82.9 | 5.1 | 3.8 | 8.2 |
B | 84.0 | 5.2 | 3.5 | 7.3 |
C | 83.3 | 5.4 | 4 | 7.3 |
D | 85.2 | 5.0 | 3.7 | 6.1 |
Fig. 11 Elemental fractions in the passive films at different durations: a Ti7, b Ti5, c Ti3 after potentiostatic polarization under 0.6 V. Ti7, Ti5 and Ti3 indicate the samples in Hank’s solutions with pH values of 7, 5 and 3
Fig. 12 Deconvolved XPS spectra of Ti 2p region for the samples after potentiostatic polarization under 0.6 V in Hank’s solution with the pH value of 7, 5 and 3, respectively. Ti7, Ti5 and Ti3 indicate the samples in Hank’s solutions with pH values of 7, 5 and 3
Fig. 13 Proportions of titanium ions with varying valence in the passive films on the samples after potentiostatic polarization under 0.6 V in Hank′s solution with the pH value of 7, 5 and 3 at different sputtering durations. Ti7, Ti5 and Ti3 indicate the samples in Hank′s solutions with pH values of 7, 5 and 3
[1] | P. Qin, L.Y. Chen, C.H. Zhao, Y.J. Liu, C.D. Cao, H. Sun, L.C. Zhang, Corros. Sci. 189, 109609 (2021) |
[2] | S. Qin, X. Xu, Y. Lu, L. Li, T. Huang, J. Lin, Acta Metall. Sin. -Engl. Lett. 35, 812 (2022) |
[3] | L.C. Zhang, L.Y. Chen, Adv. Eng. Mater. 21, 801215 (2019) |
[4] | S.B. Sun, L.J. Zheng, J.H. Liu, H. Zhang, Rare Met. 42, 1353 (2023) |
[5] | P. Qin, Y. Liu, T.B. Sercombe, Y. Li, C. Zhang, C. Cao, H. Sun, L.C. Zhang, A.C.S. Biomater, Sci. Eng. 4, 2633 (2018) |
[6] | C. Xu, L.Y. Chen, C. Zheng, Z.Y. Zhang, R. Li, H.Y. Yang, J. Peng, L. Zhang, L.C. Zhang, Adv. Eng. Mater. 24, 2200674 (2022) |
[7] | L.Y. Chen, S.X. Liang, Y. Liu, L.C. Zhang, Mater. Sci. Eng. R Rep. 146, 100648 (2021) |
[8] | X.N. Hao, X. Liu, Rare Met. 41, 3677 (2022) |
[9] | C. Xu, Y. Peng, L.Y. Chen, T.Y. Zhang, S. He, K.H. Wang, Corros. Sci. 215, 111048 (2023) |
[10] | X. Jin, P. Ye, H. Ji, Z. Suo, B. Wei, X. Li, W. Fang, Int. J. Miner. Metall. Mater. 29, 2232 (2022) |
[11] | D.C. Rodrigues, P. Valderrama, T.G. Wilson, K. Palmer, A. Thomas, S. Sridhar, A. Adapalli, M. Burbano, C. Wadhwani, Materials 6, 5258 (2013) |
[12] | Z. Guo, X. Shen, F. Liu, J. Guan, Y. Zhang, F. Dong, Y. Wang, X. Yuan, B. Wang, L. Luo, Y. Su, J. Cheng, J. Alloys Compd. 960, 170739 (2023) |
[13] | J.C.M. Souza, K. Apaza-Bedoya, C.A.M. Benfatti, F.S. Silva, B. Henriques,Metals 10, 1272 (2020) |
[14] | L.Y. Chen, H.Y. Zhang, C. Zheng, H.Y. Yang, P. Qin, C. Zhao, S. Lu, S.X. Liang, L. Chai, L.C. Zhang, Mater. Des. 208, 109907 (2021) |
[15] | Y.W. Cui, L.Y. Chen, P. Qin, R. Li, Q. Zang, J. Peng, L. Zhang, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 203, 110333 (2022) |
[16] | M. Cabrini, A. Carrozza, S. Lorenzi, T. Pastore, C. Testa, D. Manfredi, P. Fino, F. Scenini, J. Mater. Process. Technol. 308, 117730 (2022) |
[17] | P.A. Mashimo, Y. Yamamoto, M. Nakamura, H.S. Reynolds, R.J. Genco, J. Periodont. 56, 548 (1985) |
[18] | P.D. Marsh, Adv. Dent. Res. 8, 263 (1994) |
[19] | M.A. Houle, D. Grenier, Med. Mal. Infect. 33, 331 (2003) |
[20] | G. Mabilleau, S. Bourdon, M.L. Joly-Guillou, R. Filmon, M.F. Basle, D. Chappard, Acta Biomater. 2, 121 (2006) |
[21] | L. Benea, N. Simionescu-Bogatu,Materials 14, 7404 (2021) |
[22] | A. Banu, L. Preda, M. Marcu, L.L. Dinca, M.E. Maxim, G. Dobri, Metal. Mater. Trans. A 53, 2060 (2022) |
[23] | Q. Qu, L. Wang, Y. Chen, L. Li, Y. He, Z. Ding, Materials 7, 5528 (2014) |
[24] | H. Mirzadeh, Int. J. Miner. Metall. Mater. 30, 1278 (2023) |
[25] | S. Liu, Y.C. Shin, Mater. Des. 164, 107552 (2019) |
[26] | W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85, 74 (2015) |
[27] | H.Y. Yang, Z. Wang, L.Y. Chen, S.L. Shu, F. Qiu, L.C. Zhang, Compos. Part B: Eng. 209, 108605 (2021) |
[28] | L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016) |
[29] | L. Chen, J. Li, Y. Zhang, W. Lu, L.C. Zhang, L. Wang, D. Zhang, J. Nucl. Sci. Technol. 53, 496 (2016) |
[30] | Y. Bai, X. Gai, S. Li, L.C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, Y. Gao, Corros. Sci. 123, 289 (2017) |
[31] | N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102, 484 (2016) |
[32] | C. Man, C. Dong, T. Liu, D. Kong, D. Wang, X. Li, Appl. Surf. Sci. 467, 193 (2019) |
[33] | C. Man, C. Dong, Z. Cui, K. Xiao, Q. Yu, X. Li, Appl. Surf. Sci. 427, 763 (2018) |
[34] | P. Sang, L.Y. Chen, C. Zhao, Z.-X. Wang, H. Wang, S. Lu, D. Song, J.H. Xu, L.C. Zhang, Metals 9, 1342 (2019) |
[35] | Y. Xu, M.Y. Tan, Corros. Sci. 151, 163 (2019) |
[36] | D.S. Kong, J.X. Wu, J. Electro. Soc. 155, C32 (2008) |
[37] | X. Gai, Y. Bai, J. Li, S. Li, W. Hou, Y. Hao, X. Zhang, R. Yang, R.D.K. Misra, Corros. Sci. 145, 80 (2018) |
[38] | M. Lakatos-Varsanyi, F. Falkenberg, I. Olefjord, Electrochim. Acta 43, 187 (1998) |
[39] | N. Dai, L.C. Zhang, J. Zhang, X. Zhang, Q. Ni, Y. Chen, M. Wu, C. Yang, Corros. Sci. 111, 703 (2016) |
[40] | R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, R.M. Souto, Electrochim. Acta 137, 280 (2014) |
[41] | G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. Gonzalez, R.M. Souto, Electrochim. Acta 113, 470 (2013) |
[42] | D.D. Macdonald, Electrochim. Acta 56, 1761 (2011) |
[43] | R.M. Fernandez-Domene, E. Blasco-Tamarit, D.M. Garcia-Garcia, J. Garcia-Anton, Electrochim. Acta 95, 1 (2013) |
[44] | Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. Wang, X. Wang, Corros. Sci. 167, 108520 (2020) |
[45] | P. Qin, L.Y. Chen, Y.J. Liu, Z. Jia, S.X. Liang, C.H. Zhao, H. Sun, L.C. Zhang, Corros. Sci. 191, 109728 (2021) |
[46] | T. Hanawa, Mater. Sci. Eng. C 24, 745 (2004) |
[47] | R. Azadbakht, T. Almasi, H. Keypour, M. Rezaeivala, Inorg. Chem. Com. 33, 63 (2013) |
[48] | Y.W. Cui, L.Y. Chen, Y.H. Chu, L. Zhang, R. Li, S. Lu, L. Wang, L.C. Zhang, Corros. Sci. 215, 111017 (2023) |
[49] | L. Chen, J. Li, Y. Zhang, L.C. Zhang, W. Lu, L. Zhang, L. Wang, D. Zhang, Corros. Sci. 100, 651 (2015) |
[50] | L. Guan, Y. Li, G. Wang, Y. Zhang, L.C. Zhang, Electrochim. Acta 285, 172 (2018) |
[51] | L.C. Zhang, L.Y. Chen, L. Wang, Adv. Eng. Mater. 22, 1901258 (2020) |
[52] | T. Hanawa, M. Ota, Appl. Surf. Sci. 55, 269 (1992) |
[53] | L. Zhang, L.Y. Chen, C. Zhao, Y. Liu, L.C. Zhang, Metals 9, 850 (2019) |
[54] | Z. Jiang, X. Dai, T. Norby, H. Middleton, Corros. Sci. 53, 815 (2011) |
[55] | Z.R. Ye, Z.C. Qiu, Z.B. Wang, Y.G. Zheng, R. Yi, X. Zhou, Acta Metall. Sin. (Engl. Lett.) 33, 839 (2020) |
[56] | C. Liu, Y. Li, X. Cheng, X. Li, Acta Metall. Sin. (Engl. Lett.) 35, 1055 (2022) |
[57] | Y. Cui, L. Chen, L. Wang, J. Cheng, L. Zhang, Metals 13, 415 (2023) |
[58] | O.E.M., Pohler, Injury 31, D7 (2000) |
[1] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[2] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[3] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[4] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[5] | Haotian Zhou, Haijun Su, Yinuo Guo, Yuan Liu, Di Zhao, Peixin Yang, Zhonglin Shen, Le Xia, Min Guo. Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1433-1453. |
[6] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
[7] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[8] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[9] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[10] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[11] | Libo Zhou, Xisheng Bi, Jinshan Sun, Zhiming Hu, Cong Li, Jian Chen, Yanjie Ren, Yan Niu, Wei Qiu, Wei Chen. Effect of Support Height on Microstructure and Mechanical Properties of Selective Laser Melting Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1947-1960. |
[12] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
[13] | Ziyue Xu, Huan Liu, Guangyang Hu, Xiaoru Zhuo, Kai Yan, Jia Ju, Wenkai Wang, Hang Teng, Jinghua Jiang, Jing Bai. Developing Zn-1.5Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1833-1843. |
[14] | Yan-Di Jia, Shuo Cao, Ying-Jie Ma, Sen-Sen Huang, Feng-Ying Qin, Shao-Qiang Li, Wei Xiang, Qian Wang, Qing-Miao Hu, Bo Li, Jia-Feng Lei, Jing Xie, Xiang-Hong Liu, Rui Yang. Latent Heat of TB18 Titanium Alloy during β to α Phase Transition by DSC and First-Principles Methods [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1844-1856. |
[15] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||