Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 119-131.DOI: 10.1007/s40195-023-01650-4
Previous Articles Next Articles
Chao Xia1, Kexin Zhao1, Xin Zhou2, Yuqi He1, Panpan Gao1, Hengxin Zhang1, Guangrui Gao4, Fengying Zhang1(), Hua Tan3(
)
Received:
2023-09-23
Revised:
2023-10-23
Accepted:
2023-11-03
Online:
2024-01-10
Published:
2024-01-28
Contact:
Fengying Zhang, Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Powder material, DED process, deposited samples, and the tested samples: a powder morphology and distribution diagram of powder particle size; b schematic diagram of DED process and deposited samples; c schematic diagram of sample position, size and appearance of tensile sample and C(T) sample
Process strategies | Laser power (W) | Scanning speed (mm min−1) | Spot diameter (mm) | Powder feeding rate (g min−1) | Carrier gas flow rate (L min−1) | Z axis increment (mm) | Overlap ratio (%) |
---|---|---|---|---|---|---|---|
1 | 3800 | 950 | 7 | 20 | 10 | 0.9 | 50 |
2 | 1800 | 750 | 4 | 10 | 10 | 0.5 | 50 |
Table 1 DED process parameters used for Ti-6Al-4V-1Mo alloy
Process strategies | Laser power (W) | Scanning speed (mm min−1) | Spot diameter (mm) | Powder feeding rate (g min−1) | Carrier gas flow rate (L min−1) | Z axis increment (mm) | Overlap ratio (%) |
---|---|---|---|---|---|---|---|
1 | 3800 | 950 | 7 | 20 | 10 | 0.9 | 50 |
2 | 1800 | 750 | 4 | 10 | 10 | 0.5 | 50 |
Fig. 2 OM images of Morphologies of prior β grains in Ti-6Al-4V-1Mo alloy under two process parameters of high-line energy density and low-line energy density: a, b HE samples; c, d LE samples
Fig. 3 SEM images of microstructural characteristics in the grain of Ti-6Al-4V-1Mo alloy obtained under high-line energy density and low-line energy density: a-c HE samples; d-f SEM images of LE samples
Fig. 4 The α lath width and α colony width distribution diagram of Ti-6Al-4V-1Mo alloy under two process parameters of high-line energy density and low-line energy density: a distribution of α lath width in HE samples; b distribution of α colony width in HE samples; c distribution of α lath width in LE samples; d distribution of α colony width in LE samples
Fig. 5 Mechanical properties: a tensile properties of Ti-6Al-4V-1Mo alloy with tow processes; b yield strength and fracture toughness of reported additive manufactured Ti-6Al-4V alloy, high-toughness titanium alloys, Ti-6Al-4V-xFe alloys, and the DED Ti-6Al-4V-1Mo alloy in this work; c engineering stress-strain curves of LE and HE samples; d true stress-strain curves of LE and HE samples
Fig. 6 Fracture morphologies of DED Ti-6Al-4V-1Mo alloy for C(T) samples obtained under high-line energy density and low-line energy density: a-d HE samples; e-h LE samples
Fig. 8 Three-dimensional crack propagation path for C(T) sample fracture of DED Ti-6Al-4V-1Mo alloy obtained under two process parameters, the extracted line contour position and the corresponding main crack path: a three-dimensional crack propagation path of HE sample; b three-dimensional crack propagation path LE sample; c the position of four selected contour lines in HE sample; d the position of four selected contour lines in LE sample; e four main crack paths in HE sample; f four crack paths in LE sample
Fig. 9 Length and λ of the main crack path corresponding to the four line contours of DED Ti-6Al-4V-1Mo alloy obtained under high- and low-line energy density: a the length of the main crack; b the value of λ
Fig. 10 Crack propagation paths and the microstructural characteristics near the main crack in the fracture of DED Ti-6Al-4V-1Mo alloy obtained under high- and low-line energy density: a crack propagation paths of HE samples; b-f effect of microstructural characteristics on the crack in HE samples; g micro-void near the main crack of HE sample; h crack propagation paths of LE samples; i, j effect of microstructural characteristics on the crack in LE samples; k micro-void and microcrack near the main crack of LE sample
Fig. 11 Schematic diagram of the effect of different microstructure characteristics on crack deflection and the crack propagation model based on the correlation between crack propagation path and microstructure: a, b the effect of αGB; c, d the effect of α colonies; e combined effect of αGB + large α colonies; f, g the effect of α laths; h, i crack propagation model based on high and normal fracture toughness in DED Ti-6Al-4V-1Mo alloy
[1] | M.L. Dezaki, A. Serjouei, A. Zolfagharian, M. Fotouhi, M. Moradi, M. Ariffin, M. Bodaghi, Adv. Powder Mater. 4, 100054 (2022) |
[2] | W.Q. Lu, Y.J. Liu, X. Wu, X.C. Liu, J.C. Wang, Surf. Coat. Technol. 470, 129849 (2023) |
[3] | V. Anil Kumar, R. Gupta, M. Prasad, S. Narayana Murty, J. Mater. Res. 36, 689 (2021) |
[4] | P. Cavaliere, A. Silvello, A. Perrone, Int. J. Adv. Manuf. Technol. 9, 2401 (2021) |
[5] | L.C. Zhang, L.Y. Chen, S.F. Zhou, Z. Luo, J. Alloys Compd. 936, 168099 (2023) |
[6] | A. Singh, S. Kapil, M. Das, Addit. Manuf. 35, 101388 (2020) |
[7] | J.C. Wang, R. Zhu, Y.J. Liu, L.C. Zhang, Adv. Powder Technol. 2, 100137 (2023) |
[8] | F.Y. Zhang, P.P. Gao, H. Tan, Y. Li, Y. Chen, M. Mei, A.T. Clare, L.C. Zhang, J. Mater. Sci. Technol. 88, 132 (2021) |
[9] | C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Int. J. Mach. Tools Manuf. 170, 103804 (2021) |
[10] | J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, L.C. Zhang, Mater. Sci. Eng. A 760, 214 (2019) |
[11] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 105, 1 (2022) |
[12] | J. Gou, Z. Wang, S. Hu, J. Shen, Y. Tian, G. Zhao, Y. Chen, J. Alloys Compd. 829, 154481 (2020) |
[13] | H. Attar, L. L.ber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mater. Sci. Eng. A 625, 350 (2015) |
[14] | J.C. Wang, Y.J. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 61, 221 (2022) |
[15] | P.P. Gao, Dissertation, Chang’an University (2023) |
[16] | S. Dong, Q. Wang, R. Chen, Y. Qu, J. Guo, G. Li, W. Zhang, B. Yu, Mater. Charact. 196, 112591 (2023) |
[17] | W. Liu, B. Wang, X. Li, H. Sun, R. Nan, Y. Qi, Int. J. Press. Vessels Pip. 199, 104685 (2022) |
[18] | T.H. Becker, P. Kumar, U. Ramamurty, Acta Mater. 219, 117240 (2021) |
[19] | M.A. Greenfield, H. Margolin, Metall. Trans. 2, 841 (1971) |
[20] | S. Shrestha, J. El Rassi, M. Kannan, G. Morscher, A.L. Gyekenyesi, O.E. Scott-Emuakpor, Mater. Sci. Eng. A 823, 141701(2021) |
[21] | X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang, X. Cai, Mater. Des. 180, 107898 (2019) |
[22] | M.H. Yan, B.C. Liu, S.P. Wu, J. Hua, B.L. Xu, C.G. Li, F.C. Zeng, X.R. Wu, L.S. Zhou, J.G. Li, B.Y. Huang, G.P. Liu, Chinese Aeronautical Materials Handbook: Titanium alloys and Copper Alloys, 4, 32 (2001) |
[23] | S. Zhang, X. Ding, X. Gao, R. Chen, W. Cao, Y. Su, J. Guo, Int. J. Plast. 160, 103505 (2023) |
[24] | P. Kumar, O. Prakash, U. Ramamurty, Acta Mater. 154, 246 (2018) |
[25] | V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, R. Knutsen, Addit. Manuf. 5, 68 (2015) |
[26] | B. Van Hooreweder, D. Moens, R. Boonen, J.P. Kruth, P. Sas, Adv. Eng. Mater. 14, 92 (2012) |
[27] | J. Dzugan, M. Seifi, S. Rzepa, M. Rund, M. Koukolikova, H.W. Viehrig, Z. Liu, J. Lewandowski, Eng. Fract. Mech. 273, 108697 (2022) |
[28] | F. Chen, Y. Gu, G. Xu, Y. Cui, H. Chang, L. Zhou, Mater. Des. 185, 108251 (2020) |
[29] | P. Edwards, A. O’conner, M. Ramulu, J. Manuf. Sci. Eng. 135, 061016 (2013) |
[30] | C. Zhang, S. Liu, J. Zhang, D. Zhang, J. Kuang, X. Bao, G. Liu, J. Sun, Nat. Commun. 14, 1397 (2023) |
[31] | Z. Liu, Z. Du, H. Jiang, X. Zhao, T. Gong, X. Cui, J. Cheng, F. Liu, W. Chen, J. Mater. Res. Technol. 17, 2528 (2022) |
[32] | X. Shi, W. Zeng, C. Shi, H. Wang, Z. Jia, J. Alloys Compd. 632, 748 (2015) |
[33] | H. Wang, Q. Zhao, S. Xin, Y. Zhao, W. Zhou, W. Zeng, Mater. Sci. Eng. A 821, 141626 (2021) |
[34] | G. Terlinde, H.J. Rathjen, K.H. Schwalbe, Metall. Trans. A 19, 1037 (1988) |
[35] | K. Wang, H. Li, Y. Zhou, J. Wang, R. Xin, Q. Liu, Acta Metall. Sin. -Engl. Lett. 36, 353 (2023) |
[36] | Y. Liu, S.C. Lim, C. Ding, A. Huang, M. Weyland, J. Mater. Sci. Technol. 97, 101 (2022) |
[37] | Y. Liao, J. Bai, F. Chen, G. Xu, Y. Cui, J. Mater. Sci. Technol. 99, 114 (2022) |
[38] | W. Chen, W. Zeng, Y. Zhao, P. Gao, J. Xu, Q. Zhao, Mater. Sci. Eng. A 807, 140825 (2021) |
[39] | P. Zhang, W. Zeng, Y. Zheng, J. Xu, X. Liang, Y. Zhao, Mater. Sci. Eng. A 796, 140009 (2020) |
[1] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[2] | Ji-Peng Zou, Xue-Mei Luo, Bin Zhang, Guo-Dong Liu, Hong-Lei Chen, Xiao-Fei Zhu, Wen-Ke Yang, Guang-Ping Zhang. Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2045-2057. |
[3] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. |
[4] | Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li. Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1477-1493. |
[5] | Hui Wang, Biao Guo, Xuguang An, Yu Zhang. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2101-2110. |
[6] | Keli Liu, Junsheng Wang, Bing Wang, Pengcheng Mao, Yanhong Yang, Yizhou Zhou. Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 133-145. |
[7] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[8] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[9] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[10] | Linxu Li, Xiufang Gong, Changshuai Wang, Yunsheng Wu, Hongyao Yu, Haijun Su, Lanzhang Zhou. Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 872-884. |
[11] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[12] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[13] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[14] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[15] | Jiahua Zhang, Yi Yang, Sheng Cao, Zhiqiang Cao, Dmytro Kovalchuk, Songquan Wu, Enquan Liang, Xi Zhang, Wei Chen, Fan Wu, Aijun Huang. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1311-1320. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||