Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1837-1848.DOI: 10.1007/s40195-022-01413-7
Previous Articles Next Articles
Wei-Feng Liu1,2, Bi-Jun Xie1, Ming-Yue Sun1(), Bin Xu1, Yan-Fei Cao1, Dian-Zhong Li1(
)
Received:
2022-01-10
Revised:
2022-02-04
Accepted:
2022-02-22
Online:
2022-11-10
Published:
2022-05-21
Contact:
Ming-Yue Sun, mysun@imr.ac.cn; Dian-Zhong Li, dzli@imr.ac.cn
Wei-Feng Liu, Bi-Jun Xie, Ming-Yue Sun, Bin Xu, Yan-Fei Cao, Dian-Zhong Li. Interfacial Oxides Evolution of High-Speed Steel Joints by Hot-Compression Bonding[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1837-1848.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Mo | V | Si | Al | Fe |
---|---|---|---|---|---|---|
0.82 | 4.20 | 4.24 | 1.01 | 0.21 | 0.016 | Bal. |
Table 1 Chemical composition of commercial Cr4Mo4V steel (wt%)
C | Cr | Mo | V | Si | Al | Fe |
---|---|---|---|---|---|---|
0.82 | 4.20 | 4.24 | 1.01 | 0.21 | 0.016 | Bal. |
Fig. 1 a Microstructure of the as-received Cr4Mo4V HSS, b schematic of hot-compression bonding tests conducted using the thermal simulator machine, c dimensions of tensile test samples, d sampling scheme of tensile specimens from the bonding joint and base material, e dimensions of in-situ tensile test specimens, f sampling scheme of in-situ tensile specimens from the bonding joint, g schematic of the in-situ SEM setup for the tensile test
Fig. 2 Main procedures in the FIB lift-out technique for TEM sample preparation: a Pt is deposited at the interface area, b foil containing the interface area is cut free with the base material and lifted out of the sample, c foil is welded on a Cu grid, d foil is further thinned to electron transparency by ion milling
Fig. 5 TEM images of interfacial oxides: a Al2O3, b SiO2, and c compound oxide. EDS profiles of oxides: d Al2O3, e SiO2, f compound particles. FT: Fourier transformation
Fig. 10 Tensile fracture morphologies of the bonding joints and base material under various deformation and holding time. IS: intergranular surface, TS: transgranular surface
Chemical reaction | (298.15 K) | | (1423.15 K) | | |
---|---|---|---|---|---|
2Fe(s) + O2(g) = 2FeO(s) | - 533,000 | - 151.7 | - 507,462 | - 116.2 | - 342,064 |
6FeO(s) + O2(g) = 2Fe3O4(s) | - 637,800 | - 236.3 | - 693,036 | - 313.1 | - 247,532 |
4Fe3O4(s) + O2(g) = 6Fe2O3(s) | - 471,600 | - 266.3 | - 449,190 | - 235.1 | - 114,552 |
4/3Cr(s) + O2(g) = 2/3Cr2O3 | - 759,800 | - 182.7 | - 738,837 | - 153.6 | - 520,279 |
Si(s) + O2(g) = SiO2(s) | - 903,500 | - 177 | - 909,012 | - 184.7 | - 646,213 |
4/3Al(s) + O2(g) = 2/3Al2O3(s) | - 1,117,800 | - 208.9 | - 1,127,962 | - 223.0 | - 810,571 |
Table 2 Corresponding thermodynamic parameters of various chemical reactions at 298.15 K and 1423.15 K
Chemical reaction | (298.15 K) | | (1423.15 K) | | |
---|---|---|---|---|---|
2Fe(s) + O2(g) = 2FeO(s) | - 533,000 | - 151.7 | - 507,462 | - 116.2 | - 342,064 |
6FeO(s) + O2(g) = 2Fe3O4(s) | - 637,800 | - 236.3 | - 693,036 | - 313.1 | - 247,532 |
4Fe3O4(s) + O2(g) = 6Fe2O3(s) | - 471,600 | - 266.3 | - 449,190 | - 235.1 | - 114,552 |
4/3Cr(s) + O2(g) = 2/3Cr2O3 | - 759,800 | - 182.7 | - 738,837 | - 153.6 | - 520,279 |
Si(s) + O2(g) = SiO2(s) | - 903,500 | - 177 | - 909,012 | - 184.7 | - 646,213 |
4/3Al(s) + O2(g) = 2/3Al2O3(s) | - 1,117,800 | - 208.9 | - 1,127,962 | - 223.0 | - 810,571 |
[1] |
S.S. Gill, J. Singh, R. Singh, H. Singh, J. Mater. Eng. Perform. 21, 1320 (2012)
DOI URL |
[2] | Y.L. Ji, W. Zhang, X.Y. Chen, J.G. Li, Acta Metall. Sin. Eng. Lett. 29, 382 (2016) |
[3] |
G. Maizza, R. Pero, F.D. Marco, T. Ohmura, Materials 13,2657 (2020)
DOI URL |
[4] |
W.J. Shen, L.P. Yu, H.X. Liu, Y.H. He, Z. Zhou, Q. Zhang, J. Mater. Process. Technol. 275, 116383 (2020)
DOI URL |
[5] |
X.D. Zhang, C.Y. Deng, D.P. Wang, Z.J. Wang, J.H. Teng, J. Cao, W. Xu, F. Yang, Mater. Des. 91, 398 (2016)
DOI URL |
[6] | C. Hai, X.Q. Cheng, C.W. Du, X.G. Li, Acta Metall. Sin. Eng. Lett. 34, 802 (2021) |
[7] |
G.Q. Chen, Q.X. Yin, G. Zhang, X.H. Wang, B.G. Zhang, J.C. Feng, J. Manuf. Process. 39, 250 (2019)
DOI URL |
[8] |
L.F. Kanan, B. Vicharapu, A.F.B. Bueno, T. Clarke, A. De, Metall. Mater. Trans. B 49, 699 (2018)
DOI URL |
[9] | B. He, L. Cui, D.P. Wang, H.J. Li, C.X. Liu, Acta Metall. Sin. Eng. Lett. 33, 135 (2020) |
[10] |
H. Li, C. Yang, L.X. Sun, M.Q. Li, J. Alloy Compd. 720, 131 (2017)
DOI URL |
[11] |
X.W. Yang, W.Y. Li, F. Yang, S.Q. Yu, B. Xiao, Mater. Des. 104, 436 (2016)
DOI URL |
[12] |
M. Sahin, J. Mater. Process. Technol. 168, 202 (2005)
DOI URL |
[13] |
M. Mahmoudiniya, A.H. Kokabi, M. Goodarzi, L.A.I. Kestens, Mater. Sci. Eng. A 769, 138490 (2020)
DOI URL |
[14] |
L. Pan, C.T. Kwok, K.H. Lo, J. Mater. Process. Technol. 277, 116448 (2020)
DOI URL |
[15] |
Z. Yang, K. Hu, D.W. Hu, C.L. Han, Y.G. Tong, X.Y. Yang, F.Z. Wei, J.X. Zhang, Y. Shen, J. Chen, X.G. Wu, J. Alloy Compd. 764, 582 (2018)
DOI URL |
[16] | D.F. Mo, T.F. Song, Y.J. Fang, X.S. Jiang, C.Q. Luo, M.D. Simpson, Z.P. Luo, Adv. Mater. Sci. Eng. 2018, 8701890 (2018) |
[17] |
K. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya, CIRP Ann. Manuf. Technol. 62, 673 (2013)
DOI URL |
[18] |
M.Y. Sun, B. Xu, B.J. Xie, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 71, 84 (2021)
DOI URL |
[19] |
S. Noh, R. Kasada, A. Kimura, Acta Mater. 59, 3196 (2011)
DOI URL |
[20] |
G.Q. Chen, Z.L. Feng, J. Chen, L. Liu, H. Li, Q. Liu, S. Zhang, X. Cao, G. Zhang, Q.Y. Shi, Scr. Mater. 128, 41 (2017)
DOI URL |
[21] |
X. Xu, X.W. Ma, S.B. Yu, G.Q. Zhao, Y.X. Wang, X.X. Chen, Mater. Charact. 167, 110486 (2020)
DOI URL |
[22] |
C. Zhang, H. Li, M.Q. Li, J. Mater. Sci. Technol. 32, 259 (2016)
DOI |
[23] |
J.Y. Zhang, B. Xu, N.H. Tariq, M.Y. Sun, D.Z. Li, J. Mater. Sci. Technol. 46, 1 (2020)
DOI |
[24] |
L.Y. Zhou, S.B. Feng, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 35, 1671 (2019)
DOI URL |
[25] | P. Groche, S. Wohletz, M. Brenneis, C. Pabst, F. Resch, J. Mater. Process. Technol. 214, 1972 (2014) |
[26] |
Z.C. Zhu, Y. He, X.J. Zhang, H.Y. Liu, X. Li, Mater. Sci. Eng. A 669, 344 (2016)
DOI URL |
[27] |
N. Sridharan, M. Gussev, R. Seibert, C. Parish, M. Norfolk, K. Terrani, S.S. Babu, Acta Mater. 117, 228 (2016)
DOI URL |
[28] |
B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, D.Z. Li, Y.Y. Li, Mater. Des. 157, 437 (2018)
DOI URL |
[29] |
H.L. Zhang, X.Q. Chen, B. Xu, M.Y. Sun, D.Z. Li, Metall. Mater. Trans. A 51, 874 (2020)
DOI URL |
[30] |
Y.P. Wang, Y.H. Liu, S.D. Pay, B. Lan, J. Jiang, J. Mater. Process. Technol. 295, 117191 (2021)
DOI URL |
[31] |
W.F. Liu, Y.F. Cao, Y.F. Guo, B. Xu, M.Y. Sun, D.Z. Li, Mater. Charact. 169, 110636 (2020)
DOI URL |
[32] | B. Jonsson, Scand. J. Metall. 24, 21 (1995) |
[33] |
B.X. Liu, S. Wang, C.X. Chen, W. Fang, J.H. Feng, X. Zhang, F.X. Yin, Appl. Surf. Sci. 463, 121 (2019)
DOI |
[34] |
K.H. Kim, S.J. Kim, H. Shibata, S.Y. Kitamura, ISIJ Int. 54, 2144 (2014)
DOI URL |
[35] |
B.J. Xie, M.Y. Sun, B. Xu, C.Y. Wang, J.Y. Zhang, L.Z. Zhao, D.Z. Li, Y.Y. Li, J. Mater. Process. Technol. 283, 116733 (2020)
DOI URL |
[36] |
C.S. Liu, K.H. Kim, S.J. Kim, J.S. Li, S. Ueda, X. Gao, H. Shibata, S.Y. Kitamura, Metall. Mater. Trans. B 46, 1875 (2015)
DOI URL |
[37] |
C.H. Shek, J.K.L. Lai, T.S. Gu, G.M. Lin, Nano Mater. 8, 605 (1997)
DOI URL |
[38] |
A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. B 61, 3131 (2000)
DOI URL |
[39] |
J. Chen, Q. Chen, S.J. Qu, H.P. Xiang, C. Wang, J.B. Gao, A.H. Feng, D.L. Chen, Scr. Mater. 199, 113852 (2021)
DOI URL |
[40] |
T. Kizuka, Phys. Rev. Lett. 81, 4448 (1998)
DOI URL |
[1] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[2] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[3] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[4] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[5] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[6] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[7] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[8] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[9] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[10] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[11] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[12] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[13] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[14] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[15] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||