Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (9): 1277-1284.DOI: 10.1007/s40195-021-01270-w
Previous Articles Next Articles
Chao-Min Zhang1,2, Pan Xie3, Yong Jiang2(), Sheng Zhan3, Wen-Quan Ming3(
), Jiang-Hua Chen3, Ke-Xing Song1, Hao Zhang4
Received:
2021-04-04
Revised:
2021-05-06
Accepted:
2021-05-12
Online:
2021-09-10
Published:
2021-06-24
Contact:
Yong Jiang,Wen-Quan Ming
About author:
Wen-Quan Ming, wqming@hnu.edu.cnChao-Min Zhang and Pan Xie contributed equally to this paper and should be considered co-first authors.
Chao-Min Zhang, Pan Xie, Yong Jiang, Sheng Zhan, Wen-Quan Ming, Jiang-Hua Chen, Ke-Xing Song, Hao Zhang. Double-Shelled L12 Nano-structures in Quaternary Al-Er-Sc-Zr Alloys: Origin and Critical Significance[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1277-1284.
Add to citation manager EndNote|Ris|BibTeX
Bulk phase | a0 (Å) | B0 (GPa) | ||||
---|---|---|---|---|---|---|
This work | Other cal. | Expt. | This work | Other cal. | Expt. | |
FCC-Al | 4.040 | 4.03 [ 3.97 [ | 4.05 [ | 77.9 | 79.3 [ 79.2 [ | 75.8 [ |
L12-Al3Zr | 4.107 | 4.04 [ 4.10 [ 4.11 [ | 4.05 [ 4.09 [ | 102.0 | 107.2 [ 103.1 [ 100.3 [ | - |
L12-Al3Sc | 4.106 | 4.10 [ 4.04 [ | 4.10 [ | 86.7 | 91.8 [ 91.6 [ | 91.7 [ |
L12-Al3Er | 4.232 | 4.23 [ | 4.22 [ | 78.1 | 78.6 [ | - |
Table 1 Predicted lattice constants and elastic moduli of bulk Al, Al3Zr, Al3Sc and Al3Er
Bulk phase | a0 (Å) | B0 (GPa) | ||||
---|---|---|---|---|---|---|
This work | Other cal. | Expt. | This work | Other cal. | Expt. | |
FCC-Al | 4.040 | 4.03 [ 3.97 [ | 4.05 [ | 77.9 | 79.3 [ 79.2 [ | 75.8 [ |
L12-Al3Zr | 4.107 | 4.04 [ 4.10 [ 4.11 [ | 4.05 [ 4.09 [ | 102.0 | 107.2 [ 103.1 [ 100.3 [ | - |
L12-Al3Sc | 4.106 | 4.10 [ 4.04 [ | 4.10 [ | 86.7 | 91.8 [ 91.6 [ | 91.7 [ |
L12-Al3Er | 4.232 | 4.23 [ | 4.22 [ | 78.1 | 78.6 [ | - |
Fig. 1 a HAADF-STEM images of L12 nano-precipitates in an Al-0.04Er-0.04Sc-0.07Zr (at.%) alloy aged at 350 °C for 10 h, as viewed along the [001]Al. b A zoom-in of a typical double-shelled L12 nano-particle. The insets are the fast Fourier transformations (FFTs) of four different regions inside and outside of the nano-particle. c Intensity profile collected from the Al matrix to the center of the nano-particle along the blue line in b
Fig. 3 Near-interface atomic layers of Al/L12-Al3M and L12-Al3M/L12-Al3N interfaces with the energy-optimized interfacial termination and coordination. a Al-terminated and bridge-coordinated (001)Al/(001)Al3M interface, b Al-terminated and bridge-coordinated (001)Al3M/(001)Al3N interface. Blue balls represent Al atoms, and green and orange balls denote Sc/Er/Zr and Zr/Sc/Er, respectively. The red dash lines locate the interfaces
Bulk phase | ΔGV*(× 108 J/m3) | Interface | γ (J/m2) | ΔGCS (eV/atom) |
---|---|---|---|---|
L12-Al3Sc [ | 2.720 | Al/Al3Zr [ | 0.082 | 0.003 |
L12-Al3Zr [ | 3.022 | Al/Al3Sc [ | 0.154 | 0.004 |
L12-Al3Er [ | 2.375 | Al/Al3Er [ | 0.197 | 0.009 |
L12-Al3(Zr,Sc,Er) | 2.705** | Al3Sc/Al3Zr [ | -0.033 | 0.000 |
Al3Sc/Al3Er [ | -0.008 | 0.005 | ||
Al3Er/Al3Zr [ | -0.046 | 0.005 | ||
Al/Al3(Zr,Sc,Er) | 0.143** |
Table 2 Calculated volumetric formation energies (ΔGV) of L12-Al3X (X = Zr, Sc, Er), the relevant interface energies (γ) and coherent strain energies (ΔGCS)
Bulk phase | ΔGV*(× 108 J/m3) | Interface | γ (J/m2) | ΔGCS (eV/atom) |
---|---|---|---|---|
L12-Al3Sc [ | 2.720 | Al/Al3Zr [ | 0.082 | 0.003 |
L12-Al3Zr [ | 3.022 | Al/Al3Sc [ | 0.154 | 0.004 |
L12-Al3Er [ | 2.375 | Al/Al3Er [ | 0.197 | 0.009 |
L12-Al3(Zr,Sc,Er) | 2.705** | Al3Sc/Al3Zr [ | -0.033 | 0.000 |
Al3Sc/Al3Er [ | -0.008 | 0.005 | ||
Al3Er/Al3Zr [ | -0.046 | 0.005 | ||
Al/Al3(Zr,Sc,Er) | 0.143** |
Fig. 4 Calculated total formation energies as a function of nano-particle size for various possible L12-phase precipitation modes in Al-Er-Sc-Zr alloys under different Zr/Sc/Er ratios and aging temperatures of interest
[1] |
E.A. Marquis, D.N. Seidman, Acta Mater. 49, 1909 (2001)
DOI URL |
[2] |
D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50, 4021 (2002)
DOI URL |
[3] |
M.J. Jones, F.J. Humphreys, Acta Mater. 51, 2149 (2003)
DOI URL |
[4] |
S. Iwamura, Y. Miura, Acta Mater. 52, 591 (2004)
DOI URL |
[5] |
J. Røyset, N. Ryum, Int. Mater. Rev. 50, 19 (2005)
DOI URL |
[6] |
J.Y. Zhang, Y.H. Gao, C. Yang, P. Zhang, J. Kuang, G. Liu, J. Sun, Rare Met. 39, 636 (2020)
DOI URL |
[7] |
A. Berezina, T. Monastyrska, O. Davydenko, O. Molebny, S. Polishchuk, Nanoscale Res. Lett. 12, 220 (2017)
DOI PMID |
[8] |
K.E. Knipling, Microsc Microanal. 22, 688 (2016)
DOI URL |
[9] |
M.E. van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 53, 4225 (2005)
DOI URL |
[10] | A.V. Pozdniakov, R.Y. Barkov, J. Mater. Sci. Technol. 36, 1 (2019) |
[11] |
B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Scripta Mater. 51, 333 (2004)
DOI URL |
[12] |
C.B. Fuller, J.L. Murray, D.N. Seidman, Acta Mater. 53, 5401 (2005)
DOI URL |
[13] |
C.B. Fuller, D.N. Seidman, Acta Mater. 53, 5415 (2005)
DOI URL |
[14] |
A. Tolley, V. Radmilovic, U. Dahmen, Scr. Mater. 52, 621 (2005)
DOI URL |
[15] |
C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater. 51, 4803 (2003)
DOI URL |
[16] |
K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman, Acta Mater. 58, 5184 (2010)
DOI URL |
[17] |
K.E. Knipling, D.N. Seidman, D.C. Dunand, Acta Mater. 59, 943 (2011)
DOI URL |
[18] |
C. Booth-Morrison, Z. Mao, M. Diaz, C. Wolverton, D.N. Seidman, Acta Mater. 60, 4740 (2012)
DOI URL |
[19] | M.E. van Dalen, D.C. Dunand, D.N. Seidman, J. Mater. Res. 41, 7814 (2006) |
[20] |
R.A. Karnesky, D.C. Dunand, D.N. Seidman, Acta Mater. 57, 4022 (2009)
DOI URL |
[21] |
M.E. Krug, A. Werber, D.C. Dunand, D.N. Seidman, Acta Mater. 58, 134 (2010)
DOI URL |
[22] |
M.E. Van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 5224 (2011)
DOI URL |
[23] | Y. Harada, D.C. Dunand, Intermetallics 17, 17 (2009) |
[24] |
R.A. Karnesky, M.E. van Dalen, D.C. Dunand, D.N. Seidman, Scr. Mater. 55, 437 (2006)
DOI URL |
[25] |
M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, D.N. Seidman, Acta Mater. 57, 4081 (2009)
DOI URL |
[26] |
E. Clouet, L. Laé, T. ÉPicier, W. Lefebvr, M. Nastar, A. Deschamps, Nat. Mater. 5, 482 (2006)
DOI URL |
[27] | S.I. Fujikawa, Defect. Diffus. Forum143-147, 115 (1997) |
[28] | K.E. Knipling, D.N. Dunand, D.C. Dunand, Metall. Mater. Trans. A 38, 2552 (2007) |
[29] |
C.M. Zhang, Y. Jiang, F.H. Cao, T. Hu, Y.R. Wang, D.F. Yin, J. Mater. Sci. Technol. 35, 930 (2019)
DOI URL |
[30] |
Y.Q. Sun, Q.L. Pan, Y.H. Luo, S.H. Liu, W.Y. Wang, J. Ye, Y.J. Shi, Z.Q. Huang, S.Q. Xiang, Y.R. Liu, Mater. Charact. 174, 110971 (2021)
DOI URL |
[31] | C.M. Zhang, Y. Jiang, X.H. Guo, K.X. Song, Acta Metall. Sin.-Engl. Lett. 33, 1627 (2020) |
[32] |
C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 7029 (2011)
DOI URL |
[33] |
N.Q. Vo, D.C. Dunand, D.N. Seidman, Acta Mater. 63, 73 (2014)
DOI URL |
[34] | N.Q. Vo, D.C. Dunand, D.N. Seidman, Mater. Sci. Eng. A 677, 485 (2016) |
[35] |
A. De Luca, D.C. Dunand, D.N. Seidman, Acta Mater. 144, 80 (2018)
DOI URL |
[36] |
D. Erdeniz, A. De Luca, D.N. Seidman, D.C. Dunand, Mater. Charact. 141, 260 (2018)
DOI URL |
[37] |
W. Nasim, S. Yazdi, R. Santamarta, J. Malik, D. Erdeniz, B. Mansoor, D.N. Seidman, D.C. Dunand, I. Karaman, J. Mater. Sci. 54, 1857 (2018)
DOI URL |
[38] | N.Q. Vo, D.N. Seidman, D.C. Dunand, Mater. Sci. Eng. A 734, 27 (2018) |
[39] |
A. De Luca, D.N. Seidman, D.C. Dunand, Acta Mater. 165, 1 (2019)
DOI URL |
[40] | S.H. Wu, H. Xue, C. Yang, P.M. Cheng, P. Zhang, J. Kuang, J.Y. Zhang, G. Liu, J. Sun. Mater. Sci. Eng. A 812, 141150 (2021) |
[41] |
C. Monachon, M.E. Krug, D.N. Seidman, D.C. Dunand, Acta Mater. 59, 3398 (2011)
DOI URL |
[42] |
V. Radmilovic, A. Tolley, E.A. Marquis, M.D. Rossell, Z. Leea, U. Dahmen, Scr. Mater. 58, 529 (2008)
DOI URL |
[43] |
M.D. Rossell, R. Erni, A. Tolley, E. Marquis, V. Radmilovic, U. Dahmen, Microsc. Microanal. 14, 1348 (2008)
DOI URL |
[44] |
M.E. van Dalen, T. Gyger, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 7615 (2011)
DOI URL |
[45] |
C.M. Zhang, D.F. Yin, Y. Jiang, Y.R. Wang, Comput. Mater. Sci. 162, 171 (2019)
DOI URL |
[46] |
Q. Yang, S.H. Lv, Z.X. Yan, X.R. Hua, X. Qiu, J. Meng, Mater. Des. 201, 109482 (2021)
DOI URL |
[47] | J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B: Condens. Matter 50, 15606 (1994) |
[48] |
W. Dong, G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B: Condens. Matter 54, 2157 (1996)
DOI URL |
[49] | P.E. Blöchl, Phys. Rev. B: Condens. Matter 50, 17953 (1994) |
[50] | G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999) |
[51] |
J. Leese, A.E. Lord, J. Appl. Phys. 39, 3986 (1968)
DOI URL |
[52] |
P. Vinett, J.H. Rose, J. Ferrante, J.R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989)
DOI URL |
[53] |
S.P. Sun, X.P. Li, J. Yang, H.J. Wang, Y. Jiang, D.Q. Yi, Rare Met. 37, 699 (2016)
DOI URL |
[54] |
K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97, 246 (2006)
DOI URL |
[55] | P. Villars, L. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, vol. 1-3(Metals Park, ASM, 1985), p. 1258 |
[56] | K. Syassen, W.B. Holzapfel, J. Appl. Phys. 59-49, 4427(1978) |
[57] | C. Woodward, M. Asta, G. Kresse, J. Hafner, Phys. Rev. B 63, 385 (2001) |
[58] | G.V. Sin, N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002) |
[59] |
Z. Mao, W. Chen, D.N. Seidman, C. Wolverton, Acta Mater. 59, 3012 (2011)
DOI URL |
[60] | G. Ghosh, S. Vaynman, M. Asta, M.E. Fine, Intermetallics 15, 44 (2007) |
[1] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[2] | Zhihui Li, Jinxing Yang, Jiemin Wang, Jixin Chen, Hao Zhang, Cong Cui, Xiaohui Wang, Zhonghai Ji, Yongheng Zhang, Meishuan Li. Raman Spectroscopy of Layered Compound YbB2C2 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1021-1027. |
[3] | Shiyu He, Qi Qian, Zhe Huang, Yuxiang Gong, Jiajing Chen, Yiren Wang, Yong Jiang. Nucleation of Y-Si-O Nano-clusters in Multi-microalloyed Nano-structured Ferritic Alloys: a First-principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 955-962. |
[4] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[5] | Miao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522. |
[6] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[7] | Chaomin Zhang, Yong Jiang, Xiuhua Guo, Kexing Song. Formation and Relative Stabilities of Core-Shelled L12-Phase Nano-structures in Dilute Al-Sc-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1627-1634. |
[8] | Liang Yang, Jun Li, Defang Tu, Joel C. J. Strickland, Qiaodan Hu, Hongbiao Dong, Jianguo Li. Reduced Annealing Time and Enhanced Magnetocaloric Effect of La(Fe, Al)13 Alloy by La-nonstoichiometry and Si-doping [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1535-1542. |
[9] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
[10] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. |
[11] | Krzysztof Siemek, Mirosław Kulik, Marat Eseev, Mirosław Wróbel, Andrey Kobets, Oleg Orlov, Alexey Sidorin. Surface and Subsurface Defects Studies of Dental Alloys Exposed to Sandblasting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1181-1194. |
[12] | Jia-Long Tian, Wei Wang, M. Babar Shahzad, Wei Yan, Yi-Yin Shan, Zhou-Hua Jian, Ke Yang. Corrosion Resistance of Co-containing Maraging Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 785-797. |
[13] | Yi-Xue Wang, Mu-Fu Yan, Zhao-Bo Chen, Cheng-Song Zhang, Yuan You. Crystallographic Texture Evolution of γ′-Fe4N and Its Influences on Tribological Property of Nitrided Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 371-379. |
[14] | Tuo Cai, Zhen-Jun Zhang, Jin-Bo Yang, Zhe-Feng Zhang. Exploring the Possibility of Deformation Twinning in Pure Aluminum [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 647-651. |
[15] | Temel Varol, Aykut Canakci, Sukru Ozsahin. Modeling of the Prediction of Densification Behavior of Powder Metallurgy Al-Cu-Mg/B4C Composites Using Artificial Neural Networks [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 182-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||