Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (7): 845-856.DOI: 10.1007/s40195-018-0849-7
Special Issue: 2019年铝合金专辑
• Orginal Article • Previous Articles Next Articles
Manoj Kumar Pathak1, Amit Joshi 1(), K. K. S. Mer 1, R. Jayaganthan2
Received:
2018-08-01
Revised:
2018-10-23
Accepted:
2018-11-26
Online:
2018-11-26
Published:
2019-06-20
Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856.
Add to citation manager EndNote|Ris|BibTeX
Cu | Si | Mg | Mn | Fe | Zn | Al |
---|---|---|---|---|---|---|
4.8 | 1.0027 | 0.3454 | 0.7209 | 0.2158 | 0.1165 | Balance |
Table 1 Chemical composition (wt%) of bulk Al 2014 alloy
Cu | Si | Mg | Mn | Fe | Zn | Al |
---|---|---|---|---|---|---|
4.8 | 1.0027 | 0.3454 | 0.7209 | 0.2158 | 0.1165 | Balance |
Fig. 3 Optical images of Al2014 alloy for a solution treatment, b cryorolling followed by warm rolling at 110 °C, c cryorolling followed by warm rolling at 170 °C, d cryorolling followed by warm rolling at 210 °C
Fig. 4 TEM micrographs with SAED pattern of Al 2014 alloy for a solution treatment, b cryorolling followed by warm rolling at 110 °C, c cryorolling followed by warm rolling at 170 °C along with TEM-EDX, d cryorolling followed by warm rolling at 210 °C along with TEM-EDX
Fig. 5 Variation in ultimate tensile strength (UTS), yield strength (YS) and percentage elongation before failure for Al 2014 alloy for different processed conditions
Processing condition | Vickers hardness (HV) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Percentage elongation |
---|---|---|---|---|
ST | 118 | 215 | 262 | 21 |
WR?+?110 °C | 148 | 459 | 490 | 4.5 |
WR?+?170 °C | 179 | 457 | 499 | 9.5 |
WR?+?210 °C | 137 | 376 | 452 | 14 |
Table 2 Mechanical properties of Al 2014 alloy at various material conditions
Processing condition | Vickers hardness (HV) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Percentage elongation |
---|---|---|---|---|
ST | 118 | 215 | 262 | 21 |
WR?+?110 °C | 148 | 459 | 490 | 4.5 |
WR?+?170 °C | 179 | 457 | 499 | 9.5 |
WR?+?210 °C | 137 | 376 | 452 | 14 |
Fig. 7 Fractured surface morphology after tensile test of Al 2014 alloy for a solution treatment, b cryorolling followed by warm rolling at 110 °C, c cryorolling followed by warm rolling at 170 °C, d cryorolling followed by warm rolling at 210 °C
Processing Condition | Apparent fracture toughness, KQ (MPa $\sqrt m$ | Equivalent energy fracture toughness, Kee (MPa $\sqrt m$ | Crack propagation energy/J integral (kJ/mm2) |
---|---|---|---|
ST | 19.28 | 24.54 | 20.49 |
WR at 110 °C | 35.36 | 35.73 | 31.67 |
WR at 170 °C | 37.49 | 37.39 | 33.25 |
WR at 210 °C | 23.22 | 27.73 | 20.45 |
Table 3 Fracture toughness parameters of Al 2014 alloy at various material conditions
Processing Condition | Apparent fracture toughness, KQ (MPa $\sqrt m$ | Equivalent energy fracture toughness, Kee (MPa $\sqrt m$ | Crack propagation energy/J integral (kJ/mm2) |
---|---|---|---|
ST | 19.28 | 24.54 | 20.49 |
WR at 110 °C | 35.36 | 35.73 | 31.67 |
WR at 170 °C | 37.49 | 37.39 | 33.25 |
WR at 210 °C | 23.22 | 27.73 | 20.45 |
Fig. 10 Fractographs of Al 2014 alloy after three-point bend test for a pre-crack zone, b solution-treated condition, c cryorolling followed by warm rolling at 110 °C, d cryorolling followed by warm rolling at 170 °C, e cryorolling followed by warm rolling at 210 °C
|
[1] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[2] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[3] | Liang Yang, Jun Li, Defang Tu, Joel C. J. Strickland, Qiaodan Hu, Hongbiao Dong, Jianguo Li. Reduced Annealing Time and Enhanced Magnetocaloric Effect of La(Fe, Al)13 Alloy by La-nonstoichiometry and Si-doping [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1535-1542. |
[4] | Krzysztof Siemek, Mirosław Kulik, Marat Eseev, Mirosław Wróbel, Andrey Kobets, Oleg Orlov, Alexey Sidorin. Surface and Subsurface Defects Studies of Dental Alloys Exposed to Sandblasting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1181-1194. |
[5] | Yun-Long Xue, Shuang-Ming Li, Hong Zhong, Lai-Ping Li, Heng-Zhi Fu. Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr-Nb-Ti Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 514-520. |
[6] | Temel Varol, Aykut Canakci, Sukru Ozsahin. Modeling of the Prediction of Densification Behavior of Powder Metallurgy Al-Cu-Mg/B4C Composites Using Artificial Neural Networks [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 182-195. |
[7] | Vineet Kumar, I. V. Singh, B. K. Mishra,R. Jayaganthan. Improved Fracture Toughness of Cryorolled and Room Temperature Rolled 6082 Al Alloys [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 359-367. |
[8] | Yasuhiro YAMAZAKI, Shin-ichiro KUGA,Toshihiko YOSHIDA. Evaluation of interfacial strength by an instrumented indentation method and its application to an actual TBC vane [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(2): 109-117. |
[9] | Fang WANG,Weicheng CUI. Effect of three dimensional stress state on unstable fracture condition and crack opening level in a new crack growth model [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(1): 41-49. |
[10] | S.Q. Zhou, W. Zhao, W.H. Xiong, Y.N. Zhou. Effect Of Mo And Mo2c On Themicrostructure And Properties Of The Cermets Based On Ti(C,N) [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(3): 211-219 . |
[11] | H.F. Wang, J.J. Guo, G.F. Mi. Numerical Simulation of Columnar to Equiaxed Transition for Directionally Solidified Ti-44Al Alloy [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(2): 146-156 . |
[12] | H. Y. Jing; L. X. Huo; Y. F. Zhang and F. Minami( 1) College of Material Science, Tianjin University, Tianjin 300072,China 2) Osaka University, Japan). PROBABILISTIC MODELING OF BRITTLE FRACTURE WITH PRIOR DUCTILE CRACK EXTENSION [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 98-102. |
[13] | Z.L. Zhou and S.H. Liu(Dept. of Materials Science and Engineering, Dalian Railway Institute, Dalian 116028, China). INFLUENCE OF LOCAL BRITTLE ZONE ON THE FRACTURE TOUGHNESS OF HIGH-STRENGTH LOW-ALLOYED MULTIPASS WELD METALS [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(2): 87-92. |
[14] | L.F Li;YY Li;O. Sbaizeroand S. Meriani(Cryoguic Laboratory Chinese Academy of Sciences, Beijing 100080, China )(Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China)(Materials Engineering Department, University of Triesty, Italy). CERAMICS AS CANDIDATE STRUCTURAL MATERIALS FOR CRYOGENIC APPLICATIONS [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(3): 179-183. |
[15] | S.C Liu(Research Institute for Fracture Technology Faculty of Engineering, Tohoku University, Sendai, Japan; on leave from Dalian Railway Institute, Dalian 116028, China)II-Hyun Kown;T Hashida and H Takahashi(Research Institute for nacture Technology, Faculty of Engineering, Tohoku Univeristy, Sendai, Japan). EVALUATION OF EMBRITTLEMENT BEHAVIOR DUE TO SENSITIZATION IN A CRYOGENIC AUSTENITIC STAINLESS STEEL BY MEANS OF SMALL PUNCH AND FRACTURE TOUGHNESS TESTS [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(3): 239-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||