Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (9): 1201-1212.DOI: 10.1007/s40195-021-01214-4
Previous Articles Next Articles
Muhammad Rizwan1, Junxia Lu1(), Fei Chen2, Ruxia Chai1, Rafi Ullah1, Yuefei Zhang1(
), Ze Zhang1,3
Received:
2020-09-26
Revised:
2020-11-18
Accepted:
2021-01-21
Online:
2021-09-10
Published:
2021-03-12
Contact:
Junxia Lu,Yuefei Zhang
About author:
Yuefei Zhang, yfzhang@bjut.edu.cnMuhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212.
Add to citation manager EndNote|Ris|BibTeX
Laser power (W) | Powder supply rate (kg/h) | Laser scan spacing (mm) | Powder bed layer thickness (mm) | Scanning speed (mm/min) |
---|---|---|---|---|
2200-2600 | ~ 1 | 2.2 | 0.7-0.9 | 1250 |
Table 1 Parameters of laser melting deposition process
Laser power (W) | Powder supply rate (kg/h) | Laser scan spacing (mm) | Powder bed layer thickness (mm) | Scanning speed (mm/min) |
---|---|---|---|---|
2200-2600 | ~ 1 | 2.2 | 0.7-0.9 | 1250 |
Fig. 3 As built characteristics of the alloy: a XRD patterns; b OM image showing the columnar β-grain; c SEM low magnification surface view showing prior β GB and parallel α colony along prior β GB; d magnified image showing basketweave α appearance
Fig. 5 In-situ tensile deformation process of Z-direction specimen at 500 °C at a displacement of a 763 µm, b 970 µm, and c 985 µm; d fracture morphology of the specimen. The tensile direction was applied horizontally
Fig. 6 Microstructure evolution during in-situ tensile deformation of Z-direction specimen at 500 °C at a displacement of: a 653 µm, b 763 µm, c 866 µm, d 970 µm
Fig. 7 In-situ tensile deformation process of X-direction specimen at 500 °C: a before tensile deformation showing layer interface and prior β GB orientation, b deformation at displacement of 784 µm, c deformation at displacement of 842 µm, d fracture failure, e enlarged encircled part showing the trace of prior β GB, f fracture surface morphology. Loading direction was applied horizontal
Fig. 8 Microstructure variation of X-direction sample during in-situ tensile deformation at temperature of 500 °C: a slip bands along β GB at a displacement of 657 µm, b intergranular slips at a displacement of 657 μm, c slips pile-up at a displacement of 784 µm, d slips hindrance by GB at a displacement of 784 µm, e microcracks accumulation at displacement of 842 µm, f fracture failure. Inset in a: TD-tensile direction, BD-building direction
Fig. 9 SEM micrographs illustrating impact of grain boundaries on deformation process: a Z-direction specimen at a displacement of 866 µm, b X-direction specimen at a displacement of 784 µm. Schematic of the deformation mechanism at 500 °C: c Z-direction specimen, d X-direction specimen
Fig. 10 SEM micrographs showing: a uniform movement of slip bands and microcracks fusion in Z-direction, at a displacement of 970 µm (close to fracture failure), b resistance to slip bands and microcracks by misoriented grain in X-direction specimen, at a displacement of 842 µm (close to fracture failure)
[1] | J. Jiang, Z. Ren, Z. Ma, T. Zhang, P. Zhang, D.Z. Zhang, Z. Mao, Mater. Sci. Eng. A 772, 138742 (2020) |
[2] | Q.J. Sun, X. Xie, Mater. Sci. Eng. A 724, 493 (2018) |
[3] | X. Liu, A. Sha, W. Zhang, J. Chu, J. Ma, Titan Ind Progr 20, 90 (2003) |
[4] |
Y. Zhao, H. Guo, Z. Shi, Z. Yao, Y. Zhang, J. Mater. Process. Technol. 211, 1364 (2011)
DOI URL |
[5] | G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007). |
[6] | B. Zhang, L. Dembinski, C. Coddet, Mater. Sci. Eng. A 584, 21 (2013) |
[7] | X. Wang, F. Lv, L.D. Shen, H.X. Liang, D.Q. Xie, Z.J. Tian, Acta Metall. Sin.-Eng. Lett. 32, 1173 (2019) |
[8] |
X. Yan, S. Yin, C. Chen, C. Huang, R. Bolot, R. Lupoi, M. Kuang, W. Ma, C. Coddet, H. Liao, J. Alloys Compd. 764, 1056 (2018)
DOI URL |
[9] | G. Lütjering, J. Williams, A. Gysler, Microstructure and mechanical properties of titanium alloys, Microstructure and Properties of Materials (2000), p. 1 |
[10] | J. Wang, J. Lu, X. You, R. Ullah, L. Sang, L. Chang, Y. Zhang, Z. Zhang, Mater. Sci. Eng. A 749, 48 (2019) |
[11] |
B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309 (2015)
DOI URL |
[12] | J. Lu, L. Chang, J. Wang, L. Sang, S. Wu, Y. Zhang, Mater. Sci. Eng. A 712, 199 (2018) |
[13] |
Z. Liang, Z. Sun, W. Zhang, S. Wu, H. Chang, J. Alloys Compd. 782, 1041 (2019)
DOI URL |
[14] |
J. Song, Y. Han, M. Fang, F. Hu, L. Ke, Y. Li, L. Lei, W. Lu, Mater. Charact. 165, 110342 (2020)
DOI URL |
[15] | S. Al-Bermani, M. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010) |
[16] |
J. Yang, Y. Chen, Y. Huang, Z. Ning, B. Liu, C. Guo, J. Sun, J. Mater. Sci. Technol. 42, 1 (2020)
DOI URL |
[17] |
F. Wang, S. Williams, M. Rush, Int. J. Adv. Manuf. 57, 597 (2011)
DOI URL |
[18] |
T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, S. Ma, J. Alloys Compd. 817, 153334 (2020)
DOI URL |
[19] | Z. Zhao, J. Chen, X. Lu, H. Tan, X. Lin, W. Huang, Mater. Sci. Eng. A 691, 16 (2017) |
[20] |
S. Zhu, H. Yang, L. Guo, X. Fan, Mater. Charact. 70, 101 (2012)
DOI URL |
[21] | J. Zhang, Y. Yang, S. Cao, Z. Cao, D. Kovalchuk, S. Wu, E. Liang, X. Zhang, W. Chen, F. Wu, Acta Metall Sin. -Eng. Lett. 33, 1311 (2020) |
[22] | T. Vilaro, C. Colin, J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011) |
[23] | L. Qin, D. Wu, G. Yang, H. Bian, C. Wang, Appl. Laser 37, 623 (2017) |
[24] |
Z. Li, X. Cheng, J. Li, H. Wang, Mater. Charact. 128, 115 (2017)
DOI URL |
[25] | X. Wu, C. Cai, L. Yang, W. Liu, W. Li, M. Li, J. Liu, K. Zhou, Y. Shi, Mater. Sci. Eng. A 738, 10 (2018) |
[26] |
C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J. Qiu, C.N. Sun, J. Liu, Q. Wei, Y. Shi, J. Mater. Sci. Technol. 57, 51 (2020)
DOI URL |
[27] | L.M. Gammon, R.D. Briggs, J.M. Packard, K.W. Batson, R. Boyer, C.W. Domby, Metallography and microstructures of titanium and its alloys. ASM Handb. 9, 899 (2004) |
[28] |
X. Wu, J. Liang, J. Mei, C. Mitchell, P. Goodwin, W. Voice, Mater. Des. 25, 137 (2004)
DOI URL |
[29] |
R. Ullah, J. Lu, L. Sang, X. You, W. Zhang, Y. Zhang, Z. Zhang, J. Alloys Compd. 817, 152781 (2020)
DOI URL |
[30] |
J. Chen, L. Xue, S.H. Wang, J. Mater. Sci. 46, 5859 (2011)
DOI URL |
[31] |
E. Lee, R. Banerjee, S. Kar, D. Bhattacharyya, H. Fraser, Philos. Mag. 87, 3615 (2007)
DOI URL |
[32] |
R. Banerjee, D. Bhattacharyya, P. Collins, G. Viswanathan, H. Fraser, Acta Mater. 52, 377 (2004)
DOI URL |
[33] | G. Lütjering, Mater. Sci. Eng. A 243, 32 (1998) |
[34] |
S. Joseph, T.C. Lindley, D. Dye, Int. J. Plast. 110, 38 (2018)
DOI URL |
[35] | P. Åkerfeldt, M.L. Antti, R. Pederson, Mater. Sci. Eng. A 674, 428 (2016) |
[36] |
Y. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W. Huang, Acta Mater. 132, 82 (2017)
DOI URL |
[37] | S. Hémery, C. Tromas, P. Villechaise, Materials 5, 100189 (2019) |
[38] |
H. Li, C. Boehlert, T. Bieler, M. Crimp, Philos. Mag. 95, 691 (2015)
DOI URL |
[1] | Yingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942. |
[2] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[3] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[4] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[5] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[6] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[7] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[8] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. |
[9] | Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 517-525. |
[10] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[11] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[12] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. |
[13] | Dong-Wei Ao, Xing-Rong Chu, Shu-Xia Lin, Yang Yang, Jun Gao. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1287-1296. |
[14] | A. A. Yuriev, V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, R. S. Qin, A. P. Semin. Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1356-1361. |
[15] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||