Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (9): 1613-1627.DOI: 10.1007/s40195-025-01890-6
Previous Articles Next Articles
					
													Yutao Wang1, Liming Fu1( ), Shuo Ma1(
), Shuo Ma1( ), Wei Wang2, Aidang Shan1(
), Wei Wang2, Aidang Shan1( )
)
												  
						
						
						
					
				
Received:2024-11-12
															
							
																	Revised:2025-01-22
															
							
																	Accepted:2025-02-28
															
							
																	Online:2025-09-10
															
							
																	Published:2025-06-19
															
						Contact:
								Liming Fu, Yutao Wang, Liming Fu, Shuo Ma, Wei Wang, Aidang Shan. A 2.6 GPa Ultra-Strong Steel with Ultrafine Lamellar Structure Produced by Heavy Warm Rolling[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1613-1627.
Add to citation manager EndNote|Ris|BibTeX
| C | Si | Mn | P | S | Cr | Ni | Mo | Fe | 
|---|---|---|---|---|---|---|---|---|
| 0.32 | 0.07 | 0.41 | 0.007 | 0.005 | 1.31 | 2.95 | 0.21 | Bal. | 
Table 1 Chemical composition of the martensite steel in this research (wt%)
| C | Si | Mn | P | S | Cr | Ni | Mo | Fe | 
|---|---|---|---|---|---|---|---|---|
| 0.32 | 0.07 | 0.41 | 0.007 | 0.005 | 1.31 | 2.95 | 0.21 | Bal. | 
 
																													Fig. 5 IPF maps of a the AS sample, b the WQ sample, and c its corresponding PA. d The {011}α pole figures of variants and the reconstructed prior austenite. IPF map of e HWR and f HMR samples. The grain size and boundary distribution are shown in g and h
| Boundaries | Prior Austenite boundary | Packet boundary | Block boundary | |
|---|---|---|---|---|
| Misorientation (°) | 15 < θ < 45 | 45 < θ < 55 | 55 < θ < 65 | 
Table 2 Criterion of different martensite structure boundaries based on misorientation angles
| Boundaries | Prior Austenite boundary | Packet boundary | Block boundary | |
|---|---|---|---|---|
| Misorientation (°) | 15 < θ < 45 | 45 < θ < 55 | 55 < θ < 65 | 
 
																													Fig. 7 a Tensile properties of different samples in this study. b Tensile properties of this work compared with other high mechanical performance steel (UTS > 1500 MPa and TE > 5%), including low carbon martensitic steel, medium-carbon martensitic steel, maraging steel, medium Mn steel, and high Mn steel [19,30,32,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]
| Samples | YS (MPa) | UTS (MPa) | UE (%) | TE (%) | 
|---|---|---|---|---|
| As | 1039 | 1201 | 3.5 | 7.7 | 
| WQ | 1321 | 1730 | 3.3 | 5.8 | 
| HMR | 1926 | 2411 | 3.5 | 5.1 | 
| HWR | 1942 | 2575 | 4.2 | 6.7 | 
| HWR-150 | 2138 | 2413 | 3.9 | 10.3 | 
Table 3 Summarized values of tensile properties of AS, WQ, HMR, HWR, and HMR-150 specimens
| Samples | YS (MPa) | UTS (MPa) | UE (%) | TE (%) | 
|---|---|---|---|---|
| As | 1039 | 1201 | 3.5 | 7.7 | 
| WQ | 1321 | 1730 | 3.3 | 5.8 | 
| HMR | 1926 | 2411 | 3.5 | 5.1 | 
| HWR | 1942 | 2575 | 4.2 | 6.7 | 
| HWR-150 | 2138 | 2413 | 3.9 | 10.3 | 
 
																													Fig. 8 Tensile fracture morphologies of a1-a3 WQ, b1-b3 HMR, and c1-c3 HWR samples. The corresponding high-magnification images of surface and core areas are shown in a4-c4
 
																													Fig. 9 Bright-field TEM images showing martensitic lath in RD-ND plane of a WQ, b HWR, c HMR. The dislocation cell and nanotwins in the TD-RD plane of the HWR sample are shown in d and e. The high-magnification image of nanotwins is shown in f
 
																													Fig. 12 Reconstructed prior austenite (PA) IPF maps of experimental steels with a 30%, b 60%, c 90% total deformation. The corresponding grain boundary maps are shown in d to f. The selected PAs with typical morphology in each sample are compared in g
 
																													Fig. 13 Distribution of Taylor factors, slip trace, and burgers vector for the {110} <111> slip systems of a WQ sample and b HWR sample when loading in the rolling direction. c Schematic maps of the relationship between martensite grain morphology and dislocation motion during plastic deformation
 
																													Fig. 14 Tensile specimen side fracture image of a1 WQ, a2 HWR and a3 HMR. The corresponding IPF map is shown in b1-b4. c1-c4 IPF maps of the terminal area of a longitudinal crack
| [1] | G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999) | 
| [2] | H. Luo, X. Wang, Z. Liu, Z. Yang, J. Mater. Sci. Technol. 51, 130 (2020) | 
| [3] | B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59, 5845 (2011) | 
| [4] | M.N. da Silva Lima, S.F. Rodrigues, M. Al-Maharbi, J.C. Muñoz, J.M. Cabrera Marrero, H.F. Gomes de Abreu, J. Mater. Res. Technol. 24, 1757 (2023) | 
| [5] | Y. Chen, Y. Liu, J. Zhang, M. Liu, H. Li, L. Ding, Z. Jia, X. Liu, J. Mater. Sci. Technol. 213, 42 (2025) | 
| [6] | T. Müller, M.W. Kapp, A. Bachmaier, P. Felfer, R. Pippan, Acta Mater. 166, 168 (2019) | 
| [7] | H. Zheng, L. Fu, Z. Li, X. Ji, Q. Wang, W. Wang, A. Shan, Mater. Today Commun. 21, 100646 (2019) | 
| [8] | H. Zheng, L. Fu, X. Ji, Y. Ding, W. Wang, M. Wen, A. Shan, Mater. Sci. Eng. A 824, 141860 (2021) | 
| [9] | J. Hu, X. Li, Q. Meng, L. Wang, Y. Li, W. Xu, Mater. Sci. Eng. A 855, 143904 (2022) | 
| [10] | L. Zhao, L. Qian, Q. Zhou, D. Li, T. Wang, Z. Jia, F. Zhang, J. Meng, Mater. Des. 183, 108123 (2019) | 
| [11] | Y. Sun, J. Quan, H. Salvador, J. Edwards, J. Lin, T. Kozmel, S. Mathaudhu, Mater. Sci. Eng. A 838, 142750 (2022) | 
| [12] | J. Zhao, Z. Jiang, Prog. Mater. Sci. 94, 174 (2018) | 
| [13] | J. Sun, T. Jiang, Y. Wang, S. Guo, Y. Liu, Mater. Sci. Eng. A 726, 342 (2018) | 
| [14] | Y. Wang, J. Sun, T. Jiang, C. Yang, Q. Tan, S. Guo, Y. Liu, Mater. Sci. Eng. A 754, 1 (2019) | 
| [15] | Y. Kimura, T. Inoue, ISIJ Int. 55, 1762 (2015) | 
| [16] | C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167, 107625 (2019) | 
| [17] | S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006) | 
| [18] | J.K. Li, Z.N. Yang, H. Ma, C. Chen, F.C. Zhang, Scr. Mater. 228, 115327 (2023) | 
| [19] | B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357, 1029 (2017) DOI PMID | 
| [20] | L.R. Dong, J. Zhang, Y.Z. Li, Y.X. Gao, M. Wang, M.X. Huang, J.S. Wang, K.X. Chen, Science 385, 422 (2024) DOI PMID | 
| [21] | X.B. Ji, H.K. Zhang, M.J. Jian, G.C. Zhang, D.Q. Zhang, J. Mater. Eng. Perform. 33, 11458 (2024) | 
| [22] | L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, C.C. Tasan, Acta Mater. 121, 202 (2016) | 
| [23] | S. Morito, I. Kishida, T. Maki, J. Phys. IV 112, 453 (2003) | 
| [24] | H. Kitahara, N. Tsuji, Y. Minamino, Mater. Sci. Eng. A 438-440, 233 (2006) | 
| [25] | L. Lv, L. Fu, Y. Sun, A. Shan, Mater. Sci. Eng. A 731, 369 (2018) | 
| [26] | L. Lv, L. Fu, S. Ahmad, A. Shan, Mater. Sci. Eng. A 704, 469 (2017) | 
| [27] | X. Ji, L. Fu, H. Zheng, J. Peng, W. Wang, A. Shan, Mater. Sci. Eng. A 826, 141977 (2021) | 
| [28] | X. Ji, M. Jian, H. Zhang, L. Fu, L. Jian, Y. Chen, G. Zhang, A. Shan, Mater. Lett. 358, 135816 (2024) | 
| [29] | R. Song, D. Ponge, D. Raabe, Acta Mater. 53, 4881 (2005) | 
| [30] | Y. Li, G. Yuan, L. Li, J. Kang, F. Yan, P. Du, D. Raabe, G. Wang, Science 379, 168 (2023) | 
| [31] | T.W. Yin, Y.F. Shen, N. Jia, Y.J. Li, W.Y. Xue, Int. J. Plast. 168, 103704 (2023) | 
| [32] | S. Park, J.G. Kim, I.D. Jung, J.B. Seol, H. Sung, Acta Mater. 239, 118291 (2022) | 
| [33] | H. Feng, H. Wang, H. Li, H. Zhu, S. Zhang, Z. Jiang, J. Mater. Sci. Technol. 215, 244 (2025) | 
| [34] | S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang, Y.L. Yi, Mater. Sci. Eng. A 676, 38 (2016) | 
| [35] | A. Mirzaei, R. Ghaderi, P.D. Hodgson, X. Ma, G.S. Rohrer, H. Beladi, J. Mater. Sci. 57, 8904 (2022) | 
| [36] | A. Mirzaei, P.D. Hodgson, X. Ma, V.K. Peterson, E. Farabi, G.S. Rohrer, H. Beladi, Mater. Sci. Eng. A 889, 145793 (2024) | 
| [37] | M.N. Gussev, K.J. Leonard,  J. Nucl. Mater. 517, 45 (2019) DOI | 
| [38] | W. Chen, P. Gao, S. Wang, X. Zhao, Z. Zhao, Mater. Sci. Eng. A 797, 140115 (2020) | 
| [39] | D. Delagnes, F. Pettinari-Sturmel, M.H. Mathon, R. Danoix, F. Danoix, C. Bellot, P. Lamesle, A. Grellier, Acta Mater. 60, 5877 (2012) | 
| [40] | R. Ding, Y. Yao, B. Sun, G. Liu, J. He, T. Li, X. Wan, Z. Dai, D. Ponge, D. Raabe, C. Zhang, A. Godfrey, G. Miyamoto, T. Furuhara, Z. Yang, S. van der Zwaag, H. Chen, Sci. Adv. 6, 1430 (2020) DOI PMID | 
| [41] | G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76, 425 (2014) | 
| [42] | B. Hu, G. Zhu, G. Shen, Z. Wang, Q. Wen, X. Shen, H. Luo, Def. Technol. 32, 405 (2024) | 
| [43] | E.H. Hwang, J.S. Park, S.O. Kim, H.G. Seong, S.J. Kim, J. Mater. Sci. 55, 3605 (2020) DOI | 
| [44] | S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544, 460 (2017) | 
| [45] | S.H. Jiang, X.Q. Xu, W. Li, B. Peng, Y. Wu, X.J. Liu, H. Wang, X.Z. Wang, Z.P. Lu, Acta Mater. 213, 116984 (2021) | 
| [46] | Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97, 58 (2015) | 
| [47] | L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, R.O. Ritchie, Science 368, 1347 (2020) DOI PMID | 
| [48] | T. Liu, Z. Cao, H. Wang, G. Wu, J. Jin, W. Cao, Scr. Mater. 178, 285 (2020) | 
| [49] | L.J. Wang, S.H. Jiang, B. Peng, B.H. Bai, X.C. Liu, C.R. Li, X.J. Liu, X.Y. Yuan, H.H. Zhu, Y. Wu, H. Wang, X.B. Zhang, Z.P. Lu, J. Mater. Sci. Technol. 161, 245 (2023) | 
| [50] | L.J. Wang, X.J. Liu, S.H. Jiang, Y.H. Cao, Y.B. Ke, X.Y. Yuan, P. Zhang, H.H. Zhu, Y. Wu, H. Wang, X.B. Zhang, Z.P. Lu, Mater. Sci. Eng. A 886, 145724 (2023) | 
| [51] | X.D. Wang, Z.H. Guo, Y.H. Rong, Mater. Sci. Eng. A 529, 35 (2011) | 
| [52] | Y. Wang, X. Guo, C. Hu, H. Zhao, Y. Mu, G. Wang, H. Dong, Mater. Charact. 208, 113646 (2024) | 
| [53] | Y. Wang, T. Wang, C. Hu, Y. Mu, H. Zhao, H. Dong, Mater. Charact. 208, 113623 (2024) | 
| [54] | H. Zhang, G. Zhang, H. Zhou, Z. Liu, B. Xu, L. Hao, M. Sun, D. Li, Mater. Sci. Eng. A 851, 143659 (2022) | 
| [55] | B. Yang, Q. He, H. Wang, C. Wang, F. Guo, R. Hu, C. Wang, G. Fan, Q. Wang, W. Cao, C. Huang, Mater. Res. Lett. 11, 578 (2023) | 
| [56] | Y. Lu, L. Liu, J. Jian, L. Zhen, Mater. Sci. Eng. A 915, 147229 (2024) | 
| [57] | T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014) | 
| [58] | J.J. Jonas, C. Sellars, W.J.M. Tegart, S.W.J. MeG, M.S. Tegart, Metall. Rev. 14, 1 (1969) | 
| [59] | H.J. McQueen, J.J. Jonas. recovery and recrystallization during high temperature deformation. ed. by Arsenault RJ. Treatise on Mater. Sci. Technol. Vol 6 (Elsevier, London, 1975). p.393 | 
| [60] | E.O. Hall, Nature 173, 948 (1954) | 
| [61] | E.O. Hall, Proc. Phys. Soc. London, Sect. B 64, 747 (1951) | 
| [62] | S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51, 1789 (2003) | 
| [63] | B.B. Wu, Z.Q. Wang, X.L. Wang, W.S. Xu, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 759, 430 (2019) | 
| [64] | X.J. He, N. Terao, A. Berghezan, Met. Sci. 18, 367 (1984) | 
| [65] | M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011) | 
| [66] | S. Kajiwara, Metall. Trans. A 17, 1693 (1986) | 
| [67] | Y.G. Liu, M.Q. Li, Mater. Charact. 144, 490 (2018) | 
| [68] | J. Su, D. Raabe, Z. Li, Acta Mater. 163, 40 (2019) | 
| [69] | H. Gao, Y. Huang, Scr. Mater. 48, 113 (2003) | 
| [70] | I. Gutierrez-Urrutia, D. Raabe, Acta Mater. 59, 6449 (2011) | 
| [71] | K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin, Mater. Sci. Eng. A 293, 165 (2000) | 
| [72] | Y. Wang, C. Huang, X. Ma, J. Zhao, F. Guo, X. Fang, Y. Zhu, Y. Wei, Int. J. Plast. 164, 103574 (2023) | 
| [73] | I.S. Yasnikov, A. Vinogradov, Y. Estrin, Scr. Mater. 76, 37 (2014) | 
| [74] | M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006) | 
| [75] | R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet, Acta Metall. Mater. 42, 2467 (1994) | 
| [76] | R. Schouwenaars, Int. J. Plast. 178, 104012 (2024) | 
| [77] | G. Niu, H.S. Zurob, R.D.K. Misra, Q. Tang, Z. Zhang, M.T. Nguyen, L. Wang, H. Wu, Y. Zou, Acta Mater. 226, 117642 (2022) | 
| [78] | C. Ding, H. Wu, D. Liu, R.O. Ritchie, N. Gong, K. Li, L.E. Murr, G. Niu, J. Mater. Sci. Technol. 220, 299 (2025) | 
| [79] | Y. Zhai, B. Yang, X. Chen, C. Zhang, F. Guo, Q. Wang, W. Cao, C. Huang, J. Mater. Res. Technol. 28, 3025 (2024) | 
| [1] | Hasfi F. Nurly, Jinhu Zhang, Dechun Ren, Yusheng Cai, Haibin Ji, Dongsheng Xu, Zhicheng Dong, Hao Wang, Qingmiao Hu, Jiafeng Lei, Rui Yang. Refinement of α′ Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 777-792. | 
| [2] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. | 
| [3] | Yong Li, Zuohua Wang, Lihua Qian, Jian Zhao, Wu Zhang, Ping Wei, Hongwang Zhang. Origin and the Hardening Mechanism of Twinned Lenticular Martensite in a Fe-33Ni Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 899-905. | 
| [4] | Yakui Chen, Dong Wu, Dianzhong Li, Yiyi Li, Shanping Lu. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr-9Ni-Nb Austenitic Stainless Steel Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 637-649. | 
| [5] | Binbin Wu, Fangzhong Hu, Zhiquan Wang, Shaopeng Yang, Rui Zhong, Chengjia Shang, Zhigang Yang, Chi Zhang. Unraveling the Effects of Austenitizing Temperature and Austenite Grain Size on the Crystallographic Characteristics and Mechanical Properties of Martensitic Transformation Products in a Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 694-704. | 
| [6] | Bing Wang, Hong-Lin Zhang, Bin Xu, Hai-Yang Jiang, Ming-Yue Sun, Dian-Zhong Li. Sensitivity of the Impact Toughness and Microstructure of 15CrNi3MoV Steel Under Different Quenching Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1735-1748. | 
| [7] | Haidong Sun, Zuohua Wang, Shuai Zhang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. Twinned Martensitic Substructure in a Water Quenched Fe-1.0 wt% C Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1157-1163. | 
| [8] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. | 
| [9] | Xinbo Ji, Liming Fu, Han Zheng, Jian Wang, Hengchang Lu, Wei Wang, Mao Wen, Han Dong, Aidang Shan. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1812-1824. | 
| [10] | Chao Hai, Xuequn Cheng, Cuiwei Du, Xiaogang Li. Role of Martensite Structural Characteristics on Corrosion Features in Ni-Advanced Dual-Phase Low-Alloy Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 802-812. | 
| [11] | Bin-Bin Wu, Zhi-Quan Wang, Cheng-Jia Shang, Yi-Shuang Yu, Devesh Misra. Nucleation Analysis of Variant Transformed from Austenite with Σ3 Boundary in High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 523-533. | 
| [12] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. | 
| [13] | Sohail Ahmad, Li-Feng Lv, Li-Ming Fu, Huan-Rong Wang, Wei Wang, Ai-Dang Shan. Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 361-371. | 
| [14] | Feng-Mei Bai, Hong-Wei Zhou, Xiang-Hua Liu, Meng Song, Ya-Xin Sun, Hai-Long Yi, Zhen-Yi Huang. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1346-1354. | 
| [15] | Ke Zhang, Ping Liu, Wei Li, Feng-Cang Ma, Yong-Hua Rong. Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching-Partitioning-Tempering Steels [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 659-667. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			