Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (6): 659-667.DOI: 10.1007/s40195-017-0683-3
Special Issue: 2018年钢铁材料专辑
• Orginal Article • Previous Articles Next Articles
Ke Zhang1(), Ping Liu1, Wei Li1, Feng-Cang Ma1, Yong-Hua Rong2
Received:
2017-08-19
Revised:
2017-10-23
Online:
2018-06-10
Published:
2018-05-31
Ke Zhang, Ping Liu, Wei Li, Feng-Cang Ma, Yong-Hua Rong. Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching-Partitioning-Tempering Steels[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 659-667.
Add to citation manager EndNote|Ris|BibTeX
Sample | C | Mn | Si | Nb | Ac3 (°C) | M s (°C) | M f (°C) |
---|---|---|---|---|---|---|---|
Low-carbon steel | 0.19 | 1.52 | 1.57 | 0.029 | 911 ± 5 | 395 ± 5 | 171 ± 3 |
Medium-carbon steel | 0.42 | 1.46 | 1.58 | 0.028 | 797 ± 5 | 289 ± 5 | 84 ± 3 |
Table 1 Chemical compositions of experimental Q-P-T steels (wt%)
Sample | C | Mn | Si | Nb | Ac3 (°C) | M s (°C) | M f (°C) |
---|---|---|---|---|---|---|---|
Low-carbon steel | 0.19 | 1.52 | 1.57 | 0.029 | 911 ± 5 | 395 ± 5 | 171 ± 3 |
Medium-carbon steel | 0.42 | 1.46 | 1.58 | 0.028 | 797 ± 5 | 289 ± 5 | 84 ± 3 |
Fig. 1 TEM images show the martensite and retained austenite in the Q-P-T samples: a bright field image of the retained austenite in low-carbon steel; b dark field image of the retained austenite in low-carbon steel; c SAED pattern from low-carbon steel; d bright field image of the medium-carbon steel; e dark field image of the retained austenite of the medium-carbon steel; f SAED pattern from the medium-carbon steel
Fig. 2 Orientation imaging maps of low-carbon a, b and medium-carbon c, d steels after Q-P-T process. Martensite and retained austenite are simultaneously shown in a, c, while only retained austenite is shown in b, d as red. The white line indicates the prior austenite grain boundaries
Fig. 3 a OIM of low-carbon steel corresponds to the area surrounded by the white line in Fig. 2a. b Experimental {001}bcc pole figure of lath martensite and retained austenite corresponds to a. c K-S, d N-W ORs simulated from experimental {001}bcc pole figure. The symbols and numbers represent the variant numbers, and the symbol A represents retained austenite
Fig. 4 a Experimental {001}bcc pole figure of lath martensite and retained austenite corresponds to the area surrounded by the white line in Fig. 2c. b K-S, c N-W ORs simulated from {001}bcc pole figure. The symbol A in a represents the retained austenite
Fig. 5 Experimental {123}bcc pole figures of the lath martensite and retained austenite in low-carbon a-c and medium-carbon d-f steels after Q-P-T process. a, d Are patterns measured, while b, e K-S, c, f N-W ORs simulated from {123}bccpole figures, respectively
Fig. 6 Research area (in black rectangle) of low-carbon steel a and medium-carbon steel b after Q-P-T process corresponds to the partial magnification of Fig. 2a, c, respectively. The symbol A represents the retained austenite
Sample | Euler angle | ||
---|---|---|---|
\(\varphi_{1}\) | \(\varPhi\) | \(\varphi_{2}\) | |
Low-carbon Q-P-T steel (simulation) | 216.55 | 12.85 | 9.40 |
Low-carbon Q-P-T steel (measurement) | 217.39 | 12.79 | 9.42 |
Medium-carbon Q-P-T steel (simulation) | 79.80 | 45.60 | 40.30 |
Medium-carbon Q-P-T steel (measurement) | 79.71 | 45.59 | 40.38 |
Table 2 Euler angle of retained austenite obtained by simulation and EBSD measurement
Sample | Euler angle | ||
---|---|---|---|
\(\varphi_{1}\) | \(\varPhi\) | \(\varphi_{2}\) | |
Low-carbon Q-P-T steel (simulation) | 216.55 | 12.85 | 9.40 |
Low-carbon Q-P-T steel (measurement) | 217.39 | 12.79 | 9.42 |
Medium-carbon Q-P-T steel (simulation) | 79.80 | 45.60 | 40.30 |
Medium-carbon Q-P-T steel (measurement) | 79.71 | 45.59 | 40.38 |
|
[1] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[2] | Xiaosheng Zhou, Hao Chen, Chenxi Liu, Yongchang Liu. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 187-195. |
[3] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[4] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[5] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[6] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[7] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[8] | Cong-Yu Zhang, Hao Chen, Jia-Ning Zhu, Chi Zhang, Zhi-Gang Yang. A New Kinetic Mode During the Austenite-to-Ferrite Transformation in Fe-Mn and Fe-Mn-Mo Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 975-980. |
[9] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[10] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[11] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[12] | Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 716-730. |
[13] | Zhu Wang, Zi-Ru Zhang, Lei Zhang, Zhe Feng, Min-Xu Lu. Comparison Study on the Semiconductive and Dissolution Behaviour of 316L and Alloy 625 in Hydrochloric Acid Solution [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 403-414. |
[14] | Guercio Giuseppe Del, Manuela Galati, Abdollah Saboori, Paolo Fino, Luca Iuliano. Microstructure and Mechanical Performance of Ti-6Al-4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 183-203. |
[15] | Hong-Bin Li, Ming-Song Chen, Ya-Qiang Tian, Lian-Sheng Chen, Li-Qing Chen. Ultra-fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 290-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||