Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (9): 1628-1636.DOI: 10.1007/s40195-025-01884-4
Previous Articles Next Articles
					
													Tongzhao Gong1( ), Shuting Cao2, Weiye Hao1,3, Weiqi Fan1,3, Yun Chen1(
), Shuting Cao2, Weiye Hao1,3, Weiqi Fan1,3, Yun Chen1( ), Xing-Qiu Chen1, Dianzhong Li1
), Xing-Qiu Chen1, Dianzhong Li1
												  
						
						
						
					
				
Received:2024-11-21
															
							
																	Revised:2025-01-21
															
							
																	Accepted:2025-02-28
															
							
																	Online:2025-09-10
															
							
																	Published:2025-06-04
															
						Contact:
								Tongzhao Gong, Tongzhao Gong, Shuting Cao, Weiye Hao, Weiqi Fan, Yun Chen, Xing-Qiu Chen, Dianzhong Li. Modelling Microsegregation of Binary Alloy During Solidification[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1628-1636.
Add to citation manager EndNote|Ris|BibTeX
 
																													Fig. 1 Numerical convergence test of the interface mobility. a Tip growth rate and concentration. b Maximum of the tip growth rate and concentration. The size of the computational domain is 200 μm × 200 μm. The cooling rate is Rc = 10 K/s and there is no solute diffusion in solid (DS = 0)
 
																													Fig. 2 Numerical convergence test of the interval for updating quasi-equilibrium thermodynamic data. a Tip growth rate and concentration. b Maximum of the tip growth rate and concentration. The size of the computational domain is 200 μm × 200 μm. The cooling rate is Rc = 10 K/s and there is no solute diffusion in solid (DS = 0)
 
																													Fig. 3 Effects of solute diffusivity on solidification of the Fe-1.0 wt% C alloy. a Variation of the solid fraction (fS) with undercooling (∆T). b Variation of the average solute composition in liquid (CL,avg) with the solid fraction. Data of the equilibrium solidification and Scheil solidification calculated by the Thermo-Calc® (TC) software and TCFE8 thermodynamic database are also plotted. It should be noted that cementite is considered in the TC calculation, so the abrupt change occurred as the cementite began to precipitate, when the solid fraction was about 0.95
 
																													Fig. 4 Relationship between the fitting parameter and the ratio of diffusivities. a Model 1: the hyperbola function. b Model 2: the logistic function. c Model 3: the exponential associate function. d Model 4: the Gaussian function
| DS (μm2/s) | DL (μm2/s) | DS/DL | Φ | Fitting accuracy, R2 | 
|---|---|---|---|---|
| 0 | 10,000 | 0 | 0.005803 | 0.9912 | 
| 10 | 10,000 | 0.001 | 0.1208 | 0.9968 | 
| 50 | 10,000 | 0.005 | 0.2947 | 0.9960 | 
| 100 | 10,000 | 0.01 | 0.4136 | 0.9958 | 
| 500 | 10,000 | 0.05 | 0.7206 | 0.9963 | 
| 1000 | 10,000 | 0.1 | 0.8388 | 0.9974 | 
| 5000 | 10,000 | 0.5 | 0.9940 | 0.9980 | 
| 10,000 | 10,000 | 1 | 0.9999 | 0.9977 | 
Table 1 Values of the fitting parameters Φ
| DS (μm2/s) | DL (μm2/s) | DS/DL | Φ | Fitting accuracy, R2 | 
|---|---|---|---|---|
| 0 | 10,000 | 0 | 0.005803 | 0.9912 | 
| 10 | 10,000 | 0.001 | 0.1208 | 0.9968 | 
| 50 | 10,000 | 0.005 | 0.2947 | 0.9960 | 
| 100 | 10,000 | 0.01 | 0.4136 | 0.9958 | 
| 500 | 10,000 | 0.05 | 0.7206 | 0.9963 | 
| 1000 | 10,000 | 0.1 | 0.8388 | 0.9974 | 
| 5000 | 10,000 | 0.5 | 0.9940 | 0.9980 | 
| 10,000 | 10,000 | 1 | 0.9999 | 0.9977 | 
 
																													Fig. 5 Validation of the microsegregation model. a Final fitting relationship between the parameter Φ and the diffusivity ratio DS/DL. b Comparison of the average solute concentration in liquid, CL,avg, predicted by the proposed model and the PF simulations at different solid fractions (fS = 0.3, 0.6, and 0.9)
 
																													Fig. 6 Solute segregation in the 1D diffusion simulations of the Fe-1.0 wt% C alloy. a Variation of the solid fraction against the undercooling. b Variation of the average solute concentration in liquid against the solid fraction. c Solute distribution with the same solid fraction (fS = 0.9). d Solute concentration on the solid and liquid sides at the interface with the same solid fraction (fS = 0.9)
 
																													Fig. 7 Segregation model parameters derived from the 1D diffusion simulations. a-c Parameter Φ against the diffusivity ratio at different partition coefficients (k = 0.1−0.8) and liquidus slopes (m = − 500 to − 2000 K/at.). d Values of parameter χ
| Liquidus slope, m (K/at.) | a | b | Fitting accuracy, R2 | 
|---|---|---|---|
| − 500 | 1.840 × 10−3 | − 1.100 | 0.9956 | 
| − 1000 | 0.956 × 10−3 | − 1.087 | 0.9842 | 
| − 2000 | 0.447 × 10−3 | − 1.122 | 0.9893 | 
Table 2 Values of the fitting parameters, a and b, in the approximate power function between χ and k
| Liquidus slope, m (K/at.) | a | b | Fitting accuracy, R2 | 
|---|---|---|---|
| − 500 | 1.840 × 10−3 | − 1.100 | 0.9956 | 
| − 1000 | 0.956 × 10−3 | − 1.087 | 0.9842 | 
| − 2000 | 0.447 × 10−3 | − 1.122 | 0.9893 | 
 
																													Fig. 8 Comparison of the proposed microsegregation model with the experimental data and the classical models. a Al-2 wt% Cu alloy [17]. b and c Mg-x wt% Al (x = 3 and 6) alloy [32]. d Fe-0.016 wt% P alloy [31]
| [1] | W. Kurz, D.J. Fisher, R. Trivedi, Int. Mater. Rev. 64, 311 (2019) | 
| [2] | W. Kurz, M. Rappaz, R. Trivedi, Int. Mater. Rev. 66, 30 (2021) | 
| [3] | T.P. Battle, Int. Mater. Rev. 37, 249 (1992) | 
| [4] | T.F. Bower, H.D. Brody, M.C. Flemings, Trans. Metall. Soc. AIME 236, 624 (1966) | 
| [5] | T.W. Clyne, W. Kurz, Metall. Trans. A 12, 965 (1981) | 
| [6] | V.R. Voller, J. Cryst. Growth 197, 325 (1999) | 
| [7] | V.R. Voller, C. Beckermann, Metall. Mater. Trans. A 30, 3016 (1999) | 
| [8] | Y.M. Won, B.G. Thomas, Metall. Mater. Trans. A 32, 1755 (2001) | 
| [9] | W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002) | 
| [10] | I. Steinbach, Model. Simul. Mater. Sc. 17, 073001 (2009) | 
| [11] | T. Takaki, ISIJ Int. 54, 437 (2014) | 
| [12] | A. Karma, D. Tourret, Curr. Opin. Solid State Mat. Sci. 20, 25 (2016) | 
| [13] | A. Yamanaka, T. Aoki, S. Ogawa, T. Takaki, J. Crystal Growth 318, 40 (2011) | 
| [14] | T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, T. Aoki, Acta Mater. 118, 230 (2016) | 
| [15] | C. Yang, Q.Y. Xu, B.C. Liu, Comp. Mater. Sci. 136, 133 (2017) | 
| [16] | T.Z. Gong, Y. Chen, Y.F. Cao, X.H. Kang, D.Z. Li, Comp. Mater. Sci. 147, 338 (2018) | 
| [17] | M. Ohno, M. Yamashita, K. Matsuura, Int. J. Heat Mass Trans. 132, 1004 (2019) | 
| [18] | T. Gong, Y. Chen, S. Li, Y. Cao, D. Li, X.Q. Chen, G. Reinhart, H. Nguyen-Thi, J. Mater. Sci. Technol. 74, 155 (2021) | 
| [19] | H. Liu, Y. Liu, S.L. Lu, Y. Zhang, H. Chen, Y. Chen, M. Qian,  J. Mater. Sci. Technol. 130, 1 (2022) DOI | 
| [20] | T.Z. Gong, Y. Chen, W.Y. Hao, X.Q. Chen, D.Z. Li, Metals 13, 1148 (2023) | 
| [21] | T. Gong, W. Hao, W. Fan, Y. Chen, X.Q. Chen, D. Li, J. Mater. Sci. Technol. 202, 50 (2024) | 
| [22] | J. Eiken, B. Böttger, I. Steinbach, Phys. Rev. E 73, 066122 (2006) | 
| [23] | T.Z. Gong, Y. Chen, D.Z. Li, Y.F. Cao, P.X. Fu, Int. J. Heat Mass Trans. 135, 262 (2019) | 
| [24] | S.Y. He, C.J. Li, T.J. Zhan, W.D. Xuan, J. Wang, Z.M. Ren, Acta Metall. Sin. -Engl. Lett. 33, 267 (2020) | 
| [25] | Z.J. Zhou, R. Zhang, C.Y. Cui, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin. -Engl. Lett. 34, 943 (2021) | 
| [26] | Y.J. Wang, S. Chu, Z.J. Wang, J.J. Li, J.C. Wang, Acta Metall. Sin. -Engl. Lett. 35, 425 (2022) | 
| [27] | V.R. Voller, S. Sundarraj, Mater. Sci. Technol.-Lond. 9, 474 (1993) | 
| [28] | H. Combeau, J.M. Drezet, A. Mo, M. Rappaz, Metall. Mater. Trans. A 27, 2314 (1996) | 
| [29] | J.H. Kim, J.W. Park, C.H. Lee, E.P. Yoon, J. Cryst. Growth 173, 550 (1997) | 
| [30] | V.R. Voller, C. Beckermann, Metall. Mater. Trans. A 30, 2183 (1999) | 
| [31] | T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, H. Esaka, Trans. Iron Steel Inst. Jpn. 24, 873 (1984) | 
| [32] | C. Zhang, J.S. Miao, S.L. Chen, F. Zhang, A.A. Luo, J. Phase Equilib. Diff. 40, 495 (2019) | 
| [1] | Qionghuan Zeng, Yiming Chen, Zhongsheng Yang, Yunhao Huang, Zhijun Wang, Junjie Li, Jincheng Wang. Effect of Temperature and Grain Boundary on Void Evolution in Irradiated Copper: A Phase-Field Study [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1621-1632. | 
| [2] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. | 
| [3] | Keke Lu, Congjiang Zhang, Xiaotan Yuan, Hongbin Yu, Weili Ren, Biao Ding, Haibiao Lu, Yunbo Zhong, Zuosheng Lei, Hui Wang, Qiuliang Wang, Peter K. Liaw, Xuezhi Qin, Lanzhang Zhou. Effect of Magnetic Field Configuration on Stray-Crystal Formation with Different Platform Sizes during Directional Solidification of Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 904-914. | 
| [4] | Chengcheng Han, Yuna Wu, Hao Huang, Chen Chen, Huan Liu, Jinghua Jiang, Aibin Ma, Jing Bai, Hengcheng Liao. Effect of Glass Tube Suction Casting on Solidification Process and Si Refinement of Hypereutectic Al-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2094-2105. | 
| [5] | Huifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co-Ni-Al-W Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1907-1920. | 
| [6] | Mingfeng Liu, Jiantao Wang, Yongpeng Shi, Heyu Zhu, Yan Sun, Peitao Liu, Xing-Qiu Chen. Ab initio Molecular Dynamics Study of Local Atomic Structure Evolution of U-Zr Alloy Melts upon Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1549-1558. | 
| [7] | Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219. | 
| [8] | Yanyang Wu, Qiaodan Hu, Zongye Ding, Jianguo Li. Effect of Grain Size and Compression Direction on the Hot Deformation Characteristics of High-Cr Ultra-Super-Critical Rotor Steel with Columnar Grains [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 803-813. | 
| [9] | Yuhong Zhao, Hui Xing, Lijun Zhang, Houbing Huang, Dongke Sun, Xianglei Dong, Yongxing Shen, Jincheng Wang. Development of Phase-Field Modeling in Materials Science in China: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1749-1775. | 
| [10] | Wei-Peng Chen, Hua Hou, Yun-Tao Zhang, Wei Liu, Yu-Hong Zhao. Phase-Field Lattice-Boltzmann Study for α-Mg Dendrite Growth of Mg-5wt%Zn Alloy with Forced Convection [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1791-1804. | 
| [11] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. | 
| [12] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. | 
| [13] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. | 
| [14] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. | 
| [15] | Yan-Yi Xu, Jing Zhao, Chun-Yang Ye, Yan-Ping Shen, Xin-Cheng Miao, Yun-Hu Zhang, Qi-Jie Zhai. Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al-Si Alloy Under the Application of Pulsed Magneto-Oscillation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 254-274. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			