Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (7): 1095-1108.DOI: 10.1007/s40195-025-01835-z
Previous Articles Next Articles
Qi Zhou, Yufeng Xia(), Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li(
)
Received:
2024-11-12
Revised:
2024-12-26
Accepted:
2025-01-03
Online:
2025-07-10
Published:
2025-03-28
Contact:
Yufeng Xia, xyfeng@swu.edu.cn;Lu Li, lilu.swu@gmail.com
Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108.
Add to citation manager EndNote|Ris|BibTeX
Alloys | Al | Zn | Yb | Mg |
---|---|---|---|---|
AZ80 | 7.93 | 0.55 | - | Bal. |
AYbZ810 | 8.12 | 0.52 | 0.95 | Bal. |
AYbZ820 | 7.89 | 0.49 | 2.11 | Bal. |
Table 1 Actual chemical compositions of the as-cast alloys
Alloys | Al | Zn | Yb | Mg |
---|---|---|---|---|
AZ80 | 7.93 | 0.55 | - | Bal. |
AYbZ810 | 8.12 | 0.52 | 0.95 | Bal. |
AYbZ820 | 7.89 | 0.49 | 2.11 | Bal. |
Fig. 2 Backscattered electron (BSE) micrographs of as-cast AZ80-xYb alloys: a x = 0 wt%, b x = 1 wt%, c x = 2 wt%, d-f corresponding local magnification of the selected zones in a-c, g-i corresponding energy dispersive spectrometer (EDS) mapping images of d-f
Site | Phase designation | Mg | Al | Zn | Yb |
---|---|---|---|---|---|
A | β-Mg17Al12 | 58.89 | 37.66 | 3.45 | - |
B | Al3Yb | 49.93 | 37.43 | 0.51 | 12.13 |
C | Al3Yb | 50.63 | 37.25 | 0.97 | 11.15 |
D | β-Mg17Al12 | 64.31 | 33.50 | 2.18 | 0.00 |
E | Al3Yb | 28.70 | 53.96 | 0.31 | 17.03 |
F | Al3Yb | 24.32 | 56.23 | 0.33 | 19.11 |
G | β-Mg17Al12 | 63.86 | 33.53 | 2.46 | 0.14 |
Table 2 EDS results of as-cast AZ80-xYb alloys (at.%) from Fig. 2
Site | Phase designation | Mg | Al | Zn | Yb |
---|---|---|---|---|---|
A | β-Mg17Al12 | 58.89 | 37.66 | 3.45 | - |
B | Al3Yb | 49.93 | 37.43 | 0.51 | 12.13 |
C | Al3Yb | 50.63 | 37.25 | 0.97 | 11.15 |
D | β-Mg17Al12 | 64.31 | 33.50 | 2.18 | 0.00 |
E | Al3Yb | 28.70 | 53.96 | 0.31 | 17.03 |
F | Al3Yb | 24.32 | 56.23 | 0.33 | 19.11 |
G | β-Mg17Al12 | 63.86 | 33.53 | 2.46 | 0.14 |
Sample | σUTS (MPa) | σ0.2 (MPa) | EL (%) | HC | n |
---|---|---|---|---|---|
AZ80 | 168.1 ± 5.2 | 133 ± 4.9 | 4.90 ± 0.5 | 0.402 | 0.287 |
AYbZ810 | 249.8 ± 4.8 | 149 ± 5.1 | 11.70 ± 0.3 | 1.001 | 0.336 |
AYbZ820 | 226.5 ± 5.5 | 135 ± 5.3 | 10.90 ± 0.6 | 0.946 | 0.327 |
Table 3 Ultimate tensile strength (σUTS), yield strength (σ0.2), elongation to fracture (EL), work hardening capacity (HC), and work hardening exponent (n) of the as-cast AZ80-xYb alloys
Sample | σUTS (MPa) | σ0.2 (MPa) | EL (%) | HC | n |
---|---|---|---|---|---|
AZ80 | 168.1 ± 5.2 | 133 ± 4.9 | 4.90 ± 0.5 | 0.402 | 0.287 |
AYbZ810 | 249.8 ± 4.8 | 149 ± 5.1 | 11.70 ± 0.3 | 1.001 | 0.336 |
AYbZ820 | 226.5 ± 5.5 | 135 ± 5.3 | 10.90 ± 0.6 | 0.946 | 0.327 |
Fig. 9 a, b Initial and fractured inverse pole figure (IPF) maps of AZ80, c, d initial and fractured IPF maps of AYbZ810, e, f initial and fractured special boundaries maps and corresponding misorientation angle distribution of AZ80, g, h initial and fractured special boundaries maps and corresponding misorientation angle distribution of AYbZ810, i, j initial and fractured KAM maps of AZ80, k, l initial and fractured KAM maps of AYbZ810
Element | ${\varphi }$ | ${n}^\frac{1}{3}$ | ${{{V}}}^\frac{2}{3}$ | ${{\mu}}$ |
---|---|---|---|---|
Mg | 3.45 | 1.17 | 5.81 | 0.10 |
Al | 4.20 | 1.39 | 4.64 | 0.07 |
Yb | 3.22 | 1.23 | 6.86 | 0.07 |
Table 4 Parameters in the Miedema model
Element | ${\varphi }$ | ${n}^\frac{1}{3}$ | ${{{V}}}^\frac{2}{3}$ | ${{\mu}}$ |
---|---|---|---|---|
Mg | 3.45 | 1.17 | 5.81 | 0.10 |
Al | 4.20 | 1.39 | 4.64 | 0.07 |
Yb | 3.22 | 1.23 | 6.86 | 0.07 |
Crystal planes | Mg(0001)‖Al3Yb(001) | Mg(0001)‖Al3Yb(110) | Mg(0001)‖Al3Yb(111) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mg(hkil) | [$\overline{1 } 2 \overline{1 } 0$] | [$1 \overline{1 }0$ 0] | [$\overline{2 } 1 1$ 0] | [$\overline{1 } 2 \overline{1 } 0$] | [$\overline{2 } 1 1 0$] | [$\overline{1 }0 1 0$] | [$\overline{1 } 1 1 0$] | [$\overline{1 } 3 1 0$] | [$\overline{1 } 2 \overline{1 } 0$] |
Al3Yb(hkl) | [0 1 0] | [1 $\overline{1 }$ 0] | [1 0 0] | [0 0 1] | [1 $\overline{1 }$ 1] | [1 $\overline{1 } 0$] | [$\overline{1 }$ 0 $1$] | [$\overline{2 } 1 1$] | [$\overline{1 } 1 0$] |
${d}_{\text{Mg}}$ (Å) | 5.525 | 5.525 | 3.190 | 5.525 | 8.439 | 6.379 | 5.525 | 9.568 | 5.525 |
${d}_{\text{Al3Yb}}$ (Å) | 4.278 | 6.050 | 4.278 | 4.278 | 7.410 | 6.050 | 6.050 | 10.479 | 6.050 |
θ (°) | 0 | 15 | 0 | 0 | 5.26 | 0 | 0 | 0 | 0 |
δ (%) | 20.82 | 13.43 | 9.51 |
Table 5 Crystal surfaces mismatch between α-Mg and Al3Yb
Crystal planes | Mg(0001)‖Al3Yb(001) | Mg(0001)‖Al3Yb(110) | Mg(0001)‖Al3Yb(111) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mg(hkil) | [$\overline{1 } 2 \overline{1 } 0$] | [$1 \overline{1 }0$ 0] | [$\overline{2 } 1 1$ 0] | [$\overline{1 } 2 \overline{1 } 0$] | [$\overline{2 } 1 1 0$] | [$\overline{1 }0 1 0$] | [$\overline{1 } 1 1 0$] | [$\overline{1 } 3 1 0$] | [$\overline{1 } 2 \overline{1 } 0$] |
Al3Yb(hkl) | [0 1 0] | [1 $\overline{1 }$ 0] | [1 0 0] | [0 0 1] | [1 $\overline{1 }$ 1] | [1 $\overline{1 } 0$] | [$\overline{1 }$ 0 $1$] | [$\overline{2 } 1 1$] | [$\overline{1 } 1 0$] |
${d}_{\text{Mg}}$ (Å) | 5.525 | 5.525 | 3.190 | 5.525 | 8.439 | 6.379 | 5.525 | 9.568 | 5.525 |
${d}_{\text{Al3Yb}}$ (Å) | 4.278 | 6.050 | 4.278 | 4.278 | 7.410 | 6.050 | 6.050 | 10.479 | 6.050 |
θ (°) | 0 | 15 | 0 | 0 | 5.26 | 0 | 0 | 0 | 0 |
δ (%) | 20.82 | 13.43 | 9.51 |
Crystal planes | Mg17Al12(001)‖Al3Yb(001) | Mg17Al12(001)‖Al3Yb(110) | Mg17Al12(001)‖Al3Yb(111) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mg17Al12(hkl) | [1 0 0] | [1 1 0] | [0 1 0] | [1 0 0] | [9 5 0] | [0 1 0] | [9 5 0] | [5 9 0] | [0 1 0] |
Al3Yb(hkl) | [1 0 0] | [1 1 0] | [0 1 0] | [1 1 0] | [1 1 1] | [0 0 1] | [1 0 1] | [2 1 1] | [1 1 0] |
${d}_{\text{Mg}17\text{Al}12}$ (Å) | 10.526 | 14.885 | 10.526 | 10.526 | 7.754 | 10.526 | 7.754 | 7.754 | 10.526 |
${d}_{\text{Al}3\text{Yb}}$ (Å) | 8.556 | 12.100 | 8.556 | 12.100 | 7.410 | 12.100 | 6.050 | 10.479 | 12.100 |
θ (°) | 0 | 0 | 0 | 0 | 6.2 | 0 | 0.9 | 1 | 0 |
δ (%) | 18.71 | 11.63 | 24.02 |
Table 6 Crystal surfaces mismatch between β-Mg17Al12 with Al3Yb
Crystal planes | Mg17Al12(001)‖Al3Yb(001) | Mg17Al12(001)‖Al3Yb(110) | Mg17Al12(001)‖Al3Yb(111) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mg17Al12(hkl) | [1 0 0] | [1 1 0] | [0 1 0] | [1 0 0] | [9 5 0] | [0 1 0] | [9 5 0] | [5 9 0] | [0 1 0] |
Al3Yb(hkl) | [1 0 0] | [1 1 0] | [0 1 0] | [1 1 0] | [1 1 1] | [0 0 1] | [1 0 1] | [2 1 1] | [1 1 0] |
${d}_{\text{Mg}17\text{Al}12}$ (Å) | 10.526 | 14.885 | 10.526 | 10.526 | 7.754 | 10.526 | 7.754 | 7.754 | 10.526 |
${d}_{\text{Al}3\text{Yb}}$ (Å) | 8.556 | 12.100 | 8.556 | 12.100 | 7.410 | 12.100 | 6.050 | 10.479 | 12.100 |
θ (°) | 0 | 0 | 0 | 0 | 6.2 | 0 | 0.9 | 1 | 0 |
δ (%) | 18.71 | 11.63 | 24.02 |
[1] | Z.F. Jiang, B. Hu, Z.X. Li, F.J. Yao, J.X. Han, D.J. Li, X.Q. Zeng, W.J. Ding, Acta Metall. Sin.-Engl. Lett. 37, 1301 (2024) |
[2] | G.G. Wang, J.P. Weiler, J. Magnes. Alloy. 11, 78 (2023) |
[3] | Q. Yang, S.H. Lv, B. Deng, N. Hort, Y.D. Huang, W. Sun, X. Qiu, J. Mater. Sci. Technol. 178, 48 (2024) |
[4] | Y.X. Zhang, Z. Wang, S.C. Li, X. Zhao, Z.M. Zhang, Y.J. Wu, X.W. Ren, F.F. Yan, B.B. Dong, Acta Metall. Sin.-Engl. Lett. 36, 839 (2023) |
[5] | Y.F. Chen, Z.Q. Zhu, J.X. Zhou, Mater. Sci. Eng. A 850, 143513 (2022) |
[6] | S.H. Lv, Y.W. Cheng, B. Deng, T. Xu, X. Qiu, Q. Yang,J. Rare Earths42, 2239 (2024) |
[7] | Z.J. Yu, X. Xu, B.T. Du, K. Shi, K. Liu, S.B. Li, X.Z. Han, T. Xiao, W.B. Du, Acta Metall. Sin.-Engl. Lett. 35, 596 (2022) |
[8] | H. Lv, L. Li, Z.Z. Wen, C.R. Liu, W. Zhou, X. Bai, H.L. Zhong, Mater. Sci. Eng. A 833, 142521 (2022) |
[9] | B. Deng, S.H. Lv, Q. Yang, D.Y. Zhao, J.Y. Fan, X. Qiu, Rare Met. 43, 3937 (2024) |
[10] | Y.X. Wang, J.W. Fu, Y.S. Yang, Trans. Nonferrous Met. Soc. China22, 1322 (2012) |
[11] | N. Jiang, L.G. Meng, X.G. Zhang, L. Chen, C.F. Fang, H. Hao, Rare Met. 41, 4194 (2022) |
[12] | L. Li, T. Wang, Y. Wang, C.C. Zhang, H. Lv, H. Lin, W.B. Yu, C.J. Huang, J. Magnes. Alloys8, 499 (2020) |
[13] | L. Li, Y. Wang, C.C. Zhang, T. Wang, H. Lv, Mater. Sci. Eng. A 788, 139609 (2020) |
[14] | L. Li, C.C. Zhang, H. Lv, C.R. Liu, Z.Z. Wen, J.W. Jiang, J. Magnes. Alloys10, 249 (2022) |
[15] | L. Li, Y. Wang, H. Li, W. Jiang, T. Wang, C.C. Zhang, F. Wang, H. Garmestani, Comput. Mater. Sci. 166, 221 (2019) |
[16] | H. Moshaver, M. Haddad Sabzevar, M. Mazinani, M. Mahmoudi, Mater. Sci. Eng. A 854, 143676 (2022) |
[17] | C.H. Zhang, C.X. Li, C. Li, X.T. Zhao, Mater. Res. Express 8, 106514 (2021) |
[18] | N. Jiang, L. Chen, L.G. Meng, C.F. Fang, H. Hao, X.G. Zhang,J. Rare Earths34, 632 (2016) |
[19] | A. Afsharnaderi, M. Lotfpour, H. Mirzadeh, M. Emamy, M. Malekan, Mater. Sci. Eng. A 792, 139817 (2020) |
[20] | K. Hirai, H. Somekawa, Y. Takigawa, K. Higashi, Mater. Sci. Eng. A 403, 276 (2005) |
[21] | W.L. Xiao, S.S. Jia, J. Wang, J.L. Wang, L.M. Wang, J. Alloys Compd. 458, 178 (2008) |
[22] | L. Wang, E.J. Guo, W.Y. Jiang, Y.C. Feng, S.S. Zhao, Y.K. Fu, H.T. Chen, Philos. Mag. 100, 234 (2020) |
[23] | Z.H. Liu, L. Wang, L.P. Wang, Y.C. Feng, F.W. Kang, B. Wang, S.Z. Li, C.S. Hu, J. Mater. Sci. 57, 15137 (2022) |
[24] | G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol. 34, 1076 (2018) |
[25] | C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, J. Alloys Compd. 528, 40 (2012) |
[26] | L.D. Wang, C.Y. Xing, X.L. Hou, Y.M. Wu, J.F. Sun, L.M. Wang, Mater. Sci. Eng. A 527, 1891 (2010) |
[27] | R. Zhao, W. Zhu, J.S. Zhang, L.L. Zhang, J.X. Zhang, C.X. Xu, Mater. Sci. Eng. A 788, 139594 (2020) |
[28] | M. Li, K. Zhang, X.G. Li, J.W. Yuan, Y.J. Li, M.L. Ma, G.L. Shi, T. Li, J.B. Liu, Mater. Sci. Eng. A 638, 46 (2015) |
[29] | P. Cheng, Y.H. Zhao, R.P. Lu, H. Hou, Z.Q. Bu, F. Yan, Mater. Sci. Eng. A 708, 482 (2017) |
[30] | F.S. Pan, M.B. Yang, X.H. Chen, J. Mater. Sci. Technol. 32, 1211 (2016) |
[31] | J.Y. Kim, K.T. Yoo, J.W. Byeon, Mater. Charact. 172, 110865 (2021) |
[32] | K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, J.G. Han, Acta Metall. Sin.-Engl. Lett. 33, 922 (2020) |
[33] | M. Easton, D. John, Metall. Mat. Trans. A Phys. Metall. Mat. Sci. 36, 1911 (2005) |
[34] | Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mat. Trans. A Phys. Metall. Mat. Sci. 31, 2895 (2000) |
[35] | M. Sun, X.Y. Hu, L.M. Peng, P.H. Fu, Y.H. Peng, Mater. Sci. Eng. A 620, 89 (2015) |
[36] | X.H. Feng, X.S. Hu, X.J. Wang, C. Xu, H.L. Shi, X.J. Li, Z. Lu, J. Alloys Compd. 1003, 175527 (2024) |
[37] | L. Zai, X. Tong, H. Zhang, X.H. Xue, J. Mater. Res. Technol. 28, 3449 (2024) |
[38] | H. Yang, Y.D. Huang, D. Tolnai, K.U. Kainer, H. Dieringa, Mater. Sci. Eng. A 764, 138215 (2019) |
[39] | J. Su, F. Guo, X.B. Gao, H.Q. Feng, J. Alloys Compd. 854, 156209 (2021) |
[40] | F.G. Meng, L.G. Zhang, H.S. Liu, L.B. Liu, Z.P. Jin, J. Alloys Compd. 452, 279 (2008) |
[41] | Q. Tang, M.Y. Zhou, L.L. Fan, Y.W.X. Zhang, G.F. Quan, B. Liu,Vacuum155, 476 (2018) |
[42] | S.Y. Jin, H.Y. Liu, R.Z. Wu, F. Zhong, L.G. Hou, J.H. Zhang, Mater. Sci. Eng. A 788, 139611 (2020) |
[43] | B.L. Bramfitt, Met. Trans. 1, 1987 (1970) |
[44] | C.S. Ma, W.B. Yu, X.F. Pi, A. Guitton, J. Magnes. Alloys8, 1084 (2020) |
[45] | F.Q. Bu, Q. Yang, X. Qiu, T. Zheng, D.P. Zhang, X.D. Niu, Y.D. Li, X.J. Liu, J. Meng, Mater. Sci. Eng. A 639, 198 (2015) |
[46] | Y.W. Chen, J.Y. Wang, W.S. Zheng, Q. Li, M.D. Yu, T. Ying, X.Q. Zeng, Acta Mater. 263, 119521 (2024) |
[47] | F.Q. Bu, Q. Yang, K. Guan, X. Qiu, D.P. Zhang, W. Sun, T. Zheng, X.P. Cui, S.C. Sun, Z.M. Tang, X.J. Liu, J. Meng, J. Alloys Compd. 688, 1241 (2016) |
[48] | Q.X. Shi, C.J. Wang, K.K. Deng, Y.D. Fan, K.B. Nie, L. Wei, J. Alloys Compd. 938, 168606 (2023) |
[49] | D.D. Zhang, D.P. Zhang, F.Q. Bu, X.L. Li, B.S. Li, T.L. Yan, K. Guan, Q. Yang, X.J. Liu, J. Meng, J. Alloys Compd. 728, 404 (2017) |
[50] | M.Y. Li, Z.P. Guan, L.P. Liu, H.J. Jia, Z.G. Li, M.H. Wang, P.K. Ma, J.W. Song, Mater. Sci. Eng. A 890, 145940 (2024) |
[51] | J.K. Zhang, C.J. Wang, Y.D. Fan, C. Xu, K.B. Nie, K.K. Deng, Acta Metall. Sin.-Engl. Lett. 37, 551 (2023) |
[52] | Z.H. Wang, J.F. Wang, X. Lin, N. Kang, T.C. Zhang, Y.F. Wang, L. Wang, C. Dang, W.D. Huang, J. Mater. Sci. Technol. 144, 28 (2023) |
[53] | H.R. Hu, J.Y. Qin, Y.P. Zhu, J.H. Wang, X.Q. Li, P.P. Jin, Acta Metall. Sin.-Engl. Lett. 37, 407 (2024) |
[54] | H. Ma, F.Z. Meng, Q. Yang, Z.F. Xie, Y.D. Huang, X. Qiu, Rare Met. 43, 1329 (2024) |
[55] | M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007) |
[56] | C.R. Liu, L. Li, W. Zhou, X. Bai, H.L. Zhong, Z.Q. Zhang, Z.Z. Wen, J. Alloys Compd. 937, 168356 (2023) |
[1] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. |
[2] | Wangjian Yu, Rui Hu, Guoqiang Shang, Xian Luo, Hong Wang. Correlation Mechanism Between Microstructure and Fatigue Crack Propagation Behavior of Ti-Mo-Cr-V-Nb-Al Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 981-1002. |
[3] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
[4] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
[5] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
[6] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
[7] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
[8] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[9] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[10] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[11] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[12] | Yifan Li, Shengyao Ma, Xinrui Zhang, Tong Xi, Chunguang Yang, Hanyu Zhao, Ke Yang. Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 383-395. |
[13] | Hongbin Liu, Zhenqiang Xing, Yitong Yang, Jingyu Pang, Wen Li, Zhengwang Zhu, Long Zhang, Aimin Wang, Haifeng Zhang, Hongwei Zhang. A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 396-406. |
[14] | Hao Zhang, Le Zai, Xiaohuai Xue. Enhancing the Mechanical Properties Induced by Ta Microalloying in TIG-Welded Ti2AlNb-Based Intermetallic Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 419-434. |
[15] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||