Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (1): 1-44.DOI: 10.1007/s40195-024-01758-1
Sai Chen1, Shuangjie Chu1,2(), Bo Mao1(
)
Received:
2024-03-03
Revised:
2024-04-19
Accepted:
2024-04-29
Online:
2025-01-10
Published:
2024-09-12
Contact:
Shuangjie Chu,sjchu@baosteel.com;Bo Mao,bmao@sjtu.edu.cn
Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44.
Add to citation manager EndNote|Ris|BibTeX
Reinforcement | Microstructure | Targeted properties | Aimed applications | Years | Developers and references | |
---|---|---|---|---|---|---|
TiB2 | ![]() | High-temperature stability and hot compressive yield strength | Cutting tool | 1993 | Saha et al. [ | |
Al2O3-fiber | ![]() | Good conductivity and dynamic shear modulus | Coil springs | 1998 | Masahiro Inoue et al. [ | |
2-D materials | ![]() | High fatigue life and fracture toughness | The mining industry and railway switches | 2014 | Lin et al. [ | |
ZrO2 | ![]() | Excellent wear resistance | Bearing materials | 2021 | Parveez et al. [ |
Table 1 Development and application of IMMCs
Reinforcement | Microstructure | Targeted properties | Aimed applications | Years | Developers and references | |
---|---|---|---|---|---|---|
TiB2 | ![]() | High-temperature stability and hot compressive yield strength | Cutting tool | 1993 | Saha et al. [ | |
Al2O3-fiber | ![]() | Good conductivity and dynamic shear modulus | Coil springs | 1998 | Masahiro Inoue et al. [ | |
2-D materials | ![]() | High fatigue life and fracture toughness | The mining industry and railway switches | 2014 | Lin et al. [ | |
ZrO2 | ![]() | Excellent wear resistance | Bearing materials | 2021 | Parveez et al. [ |
Type | Reinforcement | Structure or crystal structure | Density, ρ (g/cm3) | Elastic modulus, E (GPa) | Melting point (°C) | E/ρ ratio (GPa cm3/g) | References |
---|---|---|---|---|---|---|---|
Oxide | Al2O3 | Trigonal | 3.98 | 370 | 2063 | 92.96 | [ |
ZrO2 | Monoclinic | 5.68 | 210 | 2715 | 36.97 | [ | |
SiO2 | Tetrahedral | 2.648 | 75 | 1716 | 28.32 | [ | |
Nitride | BN | Hexagonal | 2.1 | 865 | 2973 | 411.9 | [ |
TiN | Cubic | 5.21 | 251 | 2950 | 48.18 | [ | |
Carbide | SiC | Tetrahedron | 3.21 | 401 | 2730 | 124.92 | [ |
B4C | Rhombohedra | 2.52 | 460 | 2450 | 182.54 | [ | |
WC | Hexagonal | 15.6 | 650 | 2870 | 41.67 | [ | |
VC | Cubic | 5.77 | 380 | 1910 | 65.86 | [ | |
Cr3C2 | Orthorhombic | 6.68 | 228 | 1890 | 34.13 | [ | |
TiC | Cubic | 4.93 | 400 | 3067 | 81.14 | [ | |
Boride | TiB2 | Hexagonal | 4.51 | 565 | 2900 | 125.28 | [ |
ZrB2 | Hexagonal | 6.085 | ~ 550 | ~ 3246 | ~ 90.39 | [ | |
Composite | Zirconia toughened alumina (ZTA) | Tetragonal | 4.1-4.38 | 400 | 1980 | 91.32-97.56 | [ |
Fibers | E-glass fiber | Weave | 2.58 | 76 | 1135 | 29.46 | [ |
Kevlar fiber | Several repeating inter-chain | 1.4 | 131 | 560 | 93.57 | ||
Carbon fiber | Long, tightly interlocked chains of carbon atoms | 1.75-1.93 | 228 | 3652-3697 | 118.13-130.29 | [ | |
2-D materials | Graphene | Hexagonal | 2.09-2.33 | 1000 | 3652 | ~ 454.55 | [ |
Carbon nanotube | Hexagonal | 1.3-1.4 | 1000 | 3550 | 714.29-769.23 | [ |
Table 2 Summary of the commonly used reinforcement phases of IMMCs
Type | Reinforcement | Structure or crystal structure | Density, ρ (g/cm3) | Elastic modulus, E (GPa) | Melting point (°C) | E/ρ ratio (GPa cm3/g) | References |
---|---|---|---|---|---|---|---|
Oxide | Al2O3 | Trigonal | 3.98 | 370 | 2063 | 92.96 | [ |
ZrO2 | Monoclinic | 5.68 | 210 | 2715 | 36.97 | [ | |
SiO2 | Tetrahedral | 2.648 | 75 | 1716 | 28.32 | [ | |
Nitride | BN | Hexagonal | 2.1 | 865 | 2973 | 411.9 | [ |
TiN | Cubic | 5.21 | 251 | 2950 | 48.18 | [ | |
Carbide | SiC | Tetrahedron | 3.21 | 401 | 2730 | 124.92 | [ |
B4C | Rhombohedra | 2.52 | 460 | 2450 | 182.54 | [ | |
WC | Hexagonal | 15.6 | 650 | 2870 | 41.67 | [ | |
VC | Cubic | 5.77 | 380 | 1910 | 65.86 | [ | |
Cr3C2 | Orthorhombic | 6.68 | 228 | 1890 | 34.13 | [ | |
TiC | Cubic | 4.93 | 400 | 3067 | 81.14 | [ | |
Boride | TiB2 | Hexagonal | 4.51 | 565 | 2900 | 125.28 | [ |
ZrB2 | Hexagonal | 6.085 | ~ 550 | ~ 3246 | ~ 90.39 | [ | |
Composite | Zirconia toughened alumina (ZTA) | Tetragonal | 4.1-4.38 | 400 | 1980 | 91.32-97.56 | [ |
Fibers | E-glass fiber | Weave | 2.58 | 76 | 1135 | 29.46 | [ |
Kevlar fiber | Several repeating inter-chain | 1.4 | 131 | 560 | 93.57 | ||
Carbon fiber | Long, tightly interlocked chains of carbon atoms | 1.75-1.93 | 228 | 3652-3697 | 118.13-130.29 | [ | |
2-D materials | Graphene | Hexagonal | 2.09-2.33 | 1000 | 3652 | ~ 454.55 | [ |
Carbon nanotube | Hexagonal | 1.3-1.4 | 1000 | 3550 | 714.29-769.23 | [ |
Fig. 3 Microstructures of a hypo-eutectic 25Cr composite and b hyper-eutectic 25Cr composite. SEM images of worn surface of composite specimens after abrasion test: c hypo-eutectic composite, d hyper-eutectic composite. e Wear rates of the alloy and composite specimens after abrasion test [60]
Fig. 4 a SEM of the morphologies of GOs in the composites, b surface microhardness of the as-received and laser processed samples, c crack pinning effect by embedded GO after bending fatigue test [15], d SEM images of the GNP at grain boundaries, e corresponding EDS analyst results, f fractured GNPs in dimples [69]
Fig. 5 a SEM micrograph showing the morphology and distribution of TiC-304SS, b creep curves of two steels, c optical micrographs of etched TiC-304SS, d TEM image of the interface between TiC and steel matrix, e electron diffraction pattern taken from TiC particulate [84]
Fig. 6 a SEM image of the IMMC reinforced by TiB2 particles, b, c EDX map of Ti and Fe atoms, d EBSD phase map (red: hcp, yellow: bcc); e, f EBSD orientation map of TiB2 particles and ferrite, g load-displacement curves measured by nano-indentation tests for the TiB2 particles and ferrite, h TEM image showing the interface between the matrix and reinforcement phases, the white dash lines indicate interfaces and the inserted image shows dislocation aggregates at the interface [75]
Fig. 7 a SEM image of the composite microstructure, b IPF map of composite, c engineering tensile stress-strain curves of samples with different content of WC, d SEM image of the fracture morphology of specimen reinforced with 2 wt% WC [88]
Fig. 8 a OM, b SEM, and c EDS analysis of M3 sample. EBSD analysis of M3 sample: d IPF, e phase distribution map, f IPF of martensite phase; g tensile engineering stress-strain curves of IMMCs [96]
Fig. 9 a Schematic illustration of the structure of the interface in IMMC. Contact condition of b poor wettability and c good wettability between reinforcements and matrix, d TEM images of TiB2 and Fe matrix, HR-TEM image of e a rounded interface and f an interface of Fe–TiB2 parallel to the TiB2 prismatic plane $\{ {1 }0\overline{1} 0\}$ [101]
Fig. 10 a SEM image of WC particle, matrix, and reaction layer, b TEM images showing the magnified microstructure of IMMC and the indicated region shows the nano-sized Fe2W2C precipitation, c HR-TEM image of the interface between the nanoparticle and matrix, the orientation of d Fe2W2C nanoparticle, e austenite matrix [34]
Fig. 11 a SEM micrographs of composite heat treated at 900 °C. b EPMA element cartography of Fe, Ni, O, Zn on ferrite mixed powders after treatment at 900 °C under N2. SEM micrograph c, and TEM micrograph d of Fe-SiO2-ferrite system heat treated 1 h at 900 °C under N2 [97]
Reinforcement phase | Chemical composition of the matrix | Reaction equations | Gibbs free energy under 1873 K (kJ/mol) |
---|---|---|---|
TiB2 [ | Fe-6 Ti-2.2 B-0.2 Nb (in wt pct) | FeTi + 2FeB + Fe = TiB2 + 4Fe | − 121.311 |
TiC [ | Fe-3.61 C-2.5 Si-0.81 Cu-0.24 Mn-0.03 Ni-0.03 Cr-0.02 Ti-0.02 Mo-0.008 S-0.02 P (in wt pct) | Ti + C = TiC | − 157.296 |
NbC [ | Fe-16.7 Cr-1.1 C-0.6 Mn-0.5 Si (in wt pct) | Nb + C = NbC | − 127.794 |
Al2O3 [ | 43.14 Fe-15.85 Fe2O3-19.52 Cr2O3-7.43 NiO-14.06 Al (in wt pct) | Fe2O3 + 2Al = Al2O3 + 2Fe | − 727.151 |
Table 5 Typical in situ reaction routines and Gibbs free energy of reactions for fabricating IMMC
Reinforcement phase | Chemical composition of the matrix | Reaction equations | Gibbs free energy under 1873 K (kJ/mol) |
---|---|---|---|
TiB2 [ | Fe-6 Ti-2.2 B-0.2 Nb (in wt pct) | FeTi + 2FeB + Fe = TiB2 + 4Fe | − 121.311 |
TiC [ | Fe-3.61 C-2.5 Si-0.81 Cu-0.24 Mn-0.03 Ni-0.03 Cr-0.02 Ti-0.02 Mo-0.008 S-0.02 P (in wt pct) | Ti + C = TiC | − 157.296 |
NbC [ | Fe-16.7 Cr-1.1 C-0.6 Mn-0.5 Si (in wt pct) | Nb + C = NbC | − 127.794 |
Al2O3 [ | 43.14 Fe-15.85 Fe2O3-19.52 Cr2O3-7.43 NiO-14.06 Al (in wt pct) | Fe2O3 + 2Al = Al2O3 + 2Fe | − 727.151 |
Categories | Fabrication methods | Advantages | Disadvantages | References |
---|---|---|---|---|
Liquid state | Squeeze casting | Simple process, suitable for mass production | Inhomogeneous composite structure | [ |
Conventional casting | Simple process, low manufacturing cost | Suitable for industrial production | [ | |
Liquid phase sintering | Better wettability between the reinforced phase and matrix | Large porosity of products, poor hardness, and wear resistance | [ | |
Infiltration casting | Low equipment requirements, small investment | Poor wettability between the reinforcement phases and matrix in the finished products | [ | |
Selective laser melting | High-quality products | High cost | [ | |
Solid-state | Powder metallurgy | A large variety of available reinforcement phases and a large volume fraction of reinforcement phases | Complex production process and high cost | [ |
Spark plasma metallurgy | Good dispersion and bonding of the reinforcement phases and matrix | Difficult to apply to the preparation of large parts, complex shape parts | [ | |
SHS (self-propagating high temperature synthesis) | The simple production process, rapid reaction, high product purity | Difficult to control the reaction, large porosity and poor denseness of the products | [ | |
Exothermic dispersion | Simple reaction process | Large porosity of the resulting composites | [ | |
Gas-mixing processing | Vapor-liquid synthesis | Low cost, simple process | Inhomogeneous microstructure, high energy consumption | [ |
Spray deposition | Low pollution, high productivity | Large porosity, low material recovery | [ |
Table 6 Summary of the commonly used fabrication methods of IMMCs
Categories | Fabrication methods | Advantages | Disadvantages | References |
---|---|---|---|---|
Liquid state | Squeeze casting | Simple process, suitable for mass production | Inhomogeneous composite structure | [ |
Conventional casting | Simple process, low manufacturing cost | Suitable for industrial production | [ | |
Liquid phase sintering | Better wettability between the reinforced phase and matrix | Large porosity of products, poor hardness, and wear resistance | [ | |
Infiltration casting | Low equipment requirements, small investment | Poor wettability between the reinforcement phases and matrix in the finished products | [ | |
Selective laser melting | High-quality products | High cost | [ | |
Solid-state | Powder metallurgy | A large variety of available reinforcement phases and a large volume fraction of reinforcement phases | Complex production process and high cost | [ |
Spark plasma metallurgy | Good dispersion and bonding of the reinforcement phases and matrix | Difficult to apply to the preparation of large parts, complex shape parts | [ | |
SHS (self-propagating high temperature synthesis) | The simple production process, rapid reaction, high product purity | Difficult to control the reaction, large porosity and poor denseness of the products | [ | |
Exothermic dispersion | Simple reaction process | Large porosity of the resulting composites | [ | |
Gas-mixing processing | Vapor-liquid synthesis | Low cost, simple process | Inhomogeneous microstructure, high energy consumption | [ |
Spray deposition | Low pollution, high productivity | Large porosity, low material recovery | [ |
Fig. 12 a a schematic illustration of the pressure infiltration process for fabricating IMMCs, b distribution of ZTA particles throughout the Fe-matrix, c bonding state of ZTA/Fe, d Microstructure of the composite, e comparation of the cumulative volume loss of different materials [132]
Fig. 13 a schematic diagram of a metallic die designed for the squeeze casting process. Micrographs of b etched surfaces and c etched surfaces of the castings solidified under different applied pressures of 75 MPa, d effects of applied pressure on hardness values of the specimens [141]
Fig. 14 a schematic of LPS equipment and microstructure changes during the process [149], b microstructure of the typical micrograph of specimen with BN and 0.2%-graphene, c SEM image of sintered samples at a cooling rate of 5.4 °C /s, d tensile and yield strength of sintered steels in 0.1 °C /s cooling rates [150]
Fig. 15 Schematics of a SLM system and b SLM process. Microstructure of Gr/316L steel: c optical image and d FE-SEM image. e True stress-strain curve of samples with different Gr contents. [67]
Fig. 16 Schematic illustration of a conventional casting apparatus with stirring function and b vacuum die casting [165]. EBSD maps of 10 vol% NbC reinforced AISI 440B composite: c phase present and d IPF map reveals the martensitic laths of the matrix. e Coriolis erosion wear test results [76]
Fig. 17 a Powder metallurgy process [169]. b SEM micrographs of 21% MWCNT-Fe composite sintered at 900 °C, wet milling, black arrow showing the pores. c Distribution of the reinforcements in the Fe-matrix. d True stress-strain curves of both wet and dry milled composites sintered at 1300 °C [171]
Fig. 18 a Schematic illustration of the SPS configuration [165], b the evolution of density and hardness with temperature during SPS process, c SEM image of the microstructure of the TiC reinforced IMMC [179]
Fig. 19 a Schematic illustration of SHS processes [46], b results of Vickers hardness of composite layers and matrix. SEM images of c CS sample, d GCI sample [187]
Fig. 20 a Schematic diagram of hot compaction diffusion bonding, b SEM graphic of grain boundaries and grain size, c SEM-EDS images of bonding interface of WC-8Co-steel sintered at 1220 °C [194]
Fig. 21 a Schematic diagram of XD process [197], b DSC curves obtained at different heating rate, c SEM micrograph of the composite containing a volume fraction of 30% TiC, d the load-loss mass curves [198]
Fig. 22 a Schematic diagram of MA process, b surface profile of the TiC coatings at milling duration of 35 h, BPMR of 50:1, hard substrate, c SEM image of the composite [201]
Fig. 24 a Schematic of the cold spray deposition process [124]. b Surface morphology of the coating with two phases. TEM images of Fe-based amorphous phase and TiN phase: c bright-field image, d high-resolution images [212]
Fig. 25 a SEM image of the microstructure of the IMMC showing the distribution of Ti (CN) and TiB2 particles in steel matrix, b comparison of the calculated and measured modulus of the studied HMS as affected by the volume fraction of TiB2 [5]
Fig. 26 a Overview of microstructure of the V-V8C7/Fe composite. b The distribution of hardness in the composite. c EBSD band-index micrographs of zone I. Microstructure of d zoon II, e zoon III [231]
Fig. 27 SEM micrographs of the microstructure of the a TiC and b (Ti, W) C reinforced Fe-17Mn austenitic steel matrix composite. c Volume loss, d wear rate versus sliding distance for the unreinforced steel (1 and 2), TiC-reinforced composite (3 and 4), and (Ti, W) C-reinforced composite (5 and 6) [74]
Fig. 29 a TEM image of cross section of SLMed Fe/SiC composite and the corresponding SAD patterns. b Stress-strain curves of as-fabricated Fe/SiC composite and pure Fe sample. SEM micrographs of the tensile fracture surfaces of SLMed: c Fe sample and d Fe/SiC sample [240]
Fig. 30 a Schematic of CNT-IMMCs model (iron atoms are blue and carbon atoms are red), b state of the representative volume element (RVE) at 0.09 strain, c variation of atomic configuration along the slip direction, d stress-strain curves of the CNT-IMMC and pure iron, e change of ultimate strength and Young’s modulus with different radius [248]
[1] | J. Morris Jr., Nat. Mater. 16, 787 (2017) |
[2] | X. Li, Y.H. Tan, H.J. Willy, P. Wang, W. Lu, M. Cagirici, C.Y.A. Ong, T.S. Herng, J. Wei, J. Ding, Mater. Des 178, 107881 (2019) |
[3] | D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H. Yen, K. Sedighiani, P. Thoudden Sukumar, I.R. Souza Filho, S. Katnagallu, E. Jägle, Metall. Mater. Trans. A 51, 5517 (2020) |
[4] | Z.J. Xie, G. Han, W. Zhou, X. Wang, C. Shang, R. Misra, Scr. Mater. 155, 164 (2018) |
[5] | X. Wang, H. Leng, B. Han, X. Wang, B. Hu, H. Luo, Acta Mater. 176, 84 (2019) |
[6] | H. Zhang, H. Springer, R. Aparicio-Fernández, D. Raabe, Acta Mater. 118, 187 (2016) |
[7] | R. Rana, High-Performance Ferrous Alloys (Springer, New York, (2021) |
[8] | Y. Wang, B. Mao, S. Chu, L. He, Y. Wang, H. Xing, G. Tian, H. Zhao, S. Wang, J. Zhang, Corros. Sci. 225, 111592 (2023) |
[9] | Y. Wang, B. Mao, S. Chu, S. Chen, H. Xing, H. Zhao, S. Wang, Y. Wang, J. Zhang, B. Sun, J. Mater. Res. Technol. 24, 8198 (2023) |
[10] | M. Commisso, C. Le Bourlot, F. Bonnet, O. Zanelatto, E. Maire, Materialia 6, 100311 (2019) |
[11] | Z. Hadjem-Hamouche, K. Derrien, E. Héripré, J. Chevalier, Mater. Sci. Eng. A 724, 594 (2018) |
[12] | Y. Li, M. Huang, J. Mech. Phys. Solids 121, 313 (2018) |
[13] | B. Saha, G. Upadhyaya, J. Mater. Process. Technol. 36, 363 (1993) |
[14] | M. Inoue, H. Nagao, K. Suganuma, K. Niihara, Mater. Sci. Eng. A 258, 298 (1998) |
[15] | D. Lin, C.R. Liu, G.J. Cheng, Acta Mater. 80, 183 (2014) |
[16] | B. Parveez, M. Wani, Tribol. Int. 159, 106969 (2021) |
[17] | Y. Li, Y. Lu, W. Li, M. Khedr, H. Liu, X. Jin, Acta Mater. 158, 79 (2018) |
[18] | M.S. Martínez, E.B. Becerril, J.L. Ruiz, A.C. Cuevas, Metal Matrix Composites: Wetting and Infiltration (Springer, New York, (2018) |
[19] | D. Guan, X. He, R. Zhang, X. Qu, Mater. Sci. Eng. A 705, 231 (2017) |
[20] | B. Song, Z. Wang, Q. Yan, Y. Zhang, J. Zhang, C. Cai, Q. Wei, Y. Shi, Mater. Sci. Eng. A 707, 478 (2017) |
[21] | A. Grairia, N.E. Beliardouh, M. Zahzouh, C. Nouveau, A. Besnard, Mater. Res. Express 5, 116528 (2018) |
[22] | L. Zhong, F. Ye, Y. Xu, J. Li, Mater. Des. 54, 564 (2014) |
[23] | K. Parashivamurthy, R. Kumar, S. Seetharamu, M. Chandrasekharaiah, J. Mater. Sci. 36, 4519 (2001) |
[24] | K. Das, T.K. Bandyopadhyay, S. Das, J. Mater. Sci. 37, 3881 (2002) |
[25] | F. Akhtar, Can. Metall. Q. 53, 253 (2014) |
[26] | S. Xiang, S. Ren, Y. Liang, X. Zhang, Mater. Sci. Eng. A 768, 138459 (2019) |
[27] | Y. Nishida, Introduction to Metal Matrix Composites: Fabrication and Recycling (Springer Science and Business Media, Berlin, (2013) |
[28] | D. Abolhasani, S.M.H. Seyedkashi, T.W. Hwang, Y.H. Moon, Mater. Sci. Eng. A 763, 138161 (2019) |
[29] | U. Gökmen, Z. Özkan, U. Taşcı, S.B. Ocak, Phys. Scr. 97, 055307 (2022) |
[30] | G. Hammes, K.J. Mucelin, P. da Costa, C.B. Gonçalves, R. Binder, R. Janssen, A.N. Klein, J.D.B. de Mello, Wear 376-377, 1084 (2017) |
[31] | X.L. Li, C.H. Wang, L. Lu, J. Iron. Steel Res. Int. 19, 60 (2012) |
[32] | Y. Zou, C. Tan, Z. Qiu, W. Ma, M. Kuang, D. Zeng, Addit. Manuf. 41, 101971 (2021) |
[33] | Y. Lyu, Y. Sun, F. Jing, Ceram. Int. 41, 10934 (2015) |
[34] | H. Chen, D. Gu, K. Kosiba, T. Lu, L. Deng, L. Xi, U. Kühn, Addit. Manuf. 35, 101195 (2020) |
[35] | T. Gualtieri, A. Bandyopadhyay, Mater. Des. 139, 419 (2018) |
[36] | J.C. Betts, J. Mater. Process. Technol. 209, 5229 (2009) |
[37] | L. Zhong, Y. Xu, M. Hojamberdiev, J. Wang, J. Wang, Mater. Des. 32, 3790 (2011) |
[38] | A. Farid, S. Guo, F.E. Cui, P. Feng, T. Lin, Mater. Lett. 61, 189 (2007) |
[39] | B.P. Sharma, G. Rao, U.K. Vates, In Advances in Industrial and Production Engineering (Springer, New York, (2019), p. 303 |
[40] | J. Ru, H. He, Y. Jiang, R. Zhou, Y. Hua, J. Alloys Compd. 786, 321 (2019) |
[41] | F.G. Alabtah, E. Mahdi, Compos. Struct. 266, 113740 (2021) |
[42] | D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, J. Alloys Compd. 744, 629 (2018) |
[43] | R. Ishraaq, M. Rashid, S.M. Nahid, arXiv preprint arXiv:2102. 05025 (2021) |
[44] | Y. Sui, M. Zhou, Y. Jiang, J. Alloys Compd. 741, 1169 (2018) |
[45] | R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang, D. Raabe, Acta Mater. 107, 38 (2016) |
[46] | J. Feizabadi, J.V. Khaki, M.H. Sabzevar, M. Sharifitabar, S.A. Sani, Mater. Des. 84, 325 (2015) |
[47] | M. Hussain, V. Mandal, V. Kumar, A. Das, S. Ghosh, Opt. Laser Technol. 97, 46 (2017) |
[48] | Y. Liang, Z. Han, Z. Zhang, X. Li, L. Ren, Mater. Des. 40, 64 (2012) |
[49] | M. Dammak, M. Gaspérini, D. Barbier, Mater. Sci. Eng. A 616, 123 (2014) |
[50] | H. Bai, L. Zhong, Z. Shang, Y. Xu, H. Wu, J. Bai, B. Cao, J. Wei, J. Alloys Compd. 768, 340 (2018) |
[51] | P.W. Peters, J. Hemptenmacher, H. Schurmann, Compos. Sci. Technol. 70, 1321 (2010) |
[52] | T. Vijayaram, S. Sulaiman, A. Hamouda, M. Ahmad, J. Mater. Process. Technol. 178, 34 (2006) |
[53] | B.D. Agarwal, L.J. Broutman, K. Chandrashekhara, Analysis and Performance of Fiber Composites (Wiley, New Jercy, (2017) |
[54] | G. Garmong, L. Shepard, Metall. Trans. 2, 175 (1971) |
[55] |
L. Lassila, S. Garoushi, P.K. Vallittu, E. Säilynoja, J. Mech. Behav. Biomed. Mater. 60, 331 (2016)
DOI PMID |
[56] | S.A. Suarez, R.F. Gibson, C. Sun, S. Chaturvedi, Exp. Mech. 26, 175 (1986) |
[57] | S. Bahl, Mater. Today: Proc. 39, 317 (2021) |
[58] | H. Sueyoshi, T. Maruno, M. Asano, Y. Hirata, S. Sameshima, S. Uchida, S. Hamauzu, S. Kurita, Mater. Trans. 43, 2866 (2002) |
[59] | H. Sueyoshi, K. Kume, R. Kurose, K. Hashinokuchi, S. Uchida, T. Inoue, Mater. Sci. Technol. 27, 1347 (2011) |
[60] | M. Sakamoto, H.N. Liu, M. Nomura, K. Ogi, Wear 251, 1414 (2001) |
[61] | S. Sahoo, Reinf. Plast. 65, 101 (2021) |
[62] | A. Radhamani, H.C. Lau, S. Ramakrishna, Compos. Pt. A 114, 170 (2018) |
[63] | R.J. Young, M.F. Liu, I.A. Kinloch, S.H. Li, X. Zhao, C. Valles, D.G. Papageorgiou, Compos. Sci. Technol. 154, 110 (2018) |
[64] | Ö. Güler, N. Bağcı, J. Mater. Res. Technol. 9, 6808 (2020) |
[65] | Y.C. Zhao, Y. Tang, M.C. Zhao, L. Liu, C. Gao, C. Shuai, R.C. Zeng, A. Atrens, Y. Lin, Adv. Eng. Mater. 21, 1900314 (2019) |
[66] | L. Wang, J. Jin, P. Yang, S. Li, S. Tang, Y. Zong, Q. Peng, Comput. Mater. Sci. 191, 110309 (2021) |
[67] | A. Mandal, J.K. Tiwari, N. Sathish, A.K. Srivastava, Mater. Sci. Eng. A 774, 138936 (2020) |
[68] |
F. Essa, A.H. Elsheikh, J. Yu, O.A. Elkady, B. Saleh, J. Mater. Res. Technol. 12, 283 (2021)
DOI |
[69] | Y. Han, Y. Zhang, H. Jing, D. Lin, L. Zhao, L. Xu, P. Xin, Addit. Manuf. 34, 101381 (2020) |
[70] | M. Liu, Y. Li, Z. Cui, Q. Yang, Mater. Charact. 156, 109828 (2019) |
[71] | Y. Wang, J. Sun, T. Jiang, Y. Sun, S. Guo, Y. Liu, Acta Mater. 158, 247 (2018) |
[72] | S. Oke, O. Ige, O. Falodun, M.R. Mphahlele, P. Olubambi, 2018 IOP Conference. Ser.: Mater. Sci. Eng. p. 012034 |
[73] | A.K. Srivastava, K. Das, ISIJ Int. 49, 1372 (2009) |
[74] | A.K. Srivastava, K. Das, Tribol. Int. 43, 944 (2010) |
[75] | M. Huang, B. He, X. Wang, H. Yi, Scr. Mater. 99, 13 (2015) |
[76] | W.H. Kan, G. Proust, V. Bhatia, L. Chang, K. Dolman, T. Lucey, X. Tang, J. Cairney, Wear 420, 149 (2019) |
[77] | C. Loayza, D. Cardoso, D. Borges, A. Castro, A. Bozzi, M. Dos Reis, E. Braga, Mater. Des. 223, 111169 (2022) |
[78] | K. Das, T. Bandyopadhyay, S. Chatterjee, J. Mater. Sci. 40, 5007 (2005) |
[79] | E. Pagounis, V. Lindroos, M. Talvitie, Metall. Mater. Trans. A 27, 4183 (1996) |
[80] | H. Besharatloo, M. Carpio, J.M. Cabrera, A.M. Mateo, G. Fargas, J.M. Wheeler, J.J. Roa, L. Llanes, Metals 10, 1352 (2020) |
[81] | D. Gowtam, M. Ziyauddin, M. Mohape, S. Sontakke, V. Deshmukh, A. Shah, Int. J. Self-Propag. High Temp. Synth. 16, 70 (2007) |
[82] | A.K. Srivastava, K. Das, Mater. Sci. Eng. A 516, 1 (2009) |
[83] | B. Mao, S. Chu, S. Wang, Metals 10, 1246 (2020) |
[84] | Z. Ni, Y. Sun, F. Xue, J. Bai, Y. Lu, Mater. Des. 32, 1462 (2011) |
[85] | X. Wang, X. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Acta Metall. Sin.-Engl. Lett. 32, 746 (2019) |
[86] | B. Wang, G. Wang, R. Misra, H. Yi, Mater. Sci. Eng. A 812, 141100 (2021) |
[87] | R. Han, G. Yang, X. Sun, G. Zhao, X. Liang, X. Zhu, Acta Metall. Sin.-Engl. Lett. 58, 1589 (2022) |
[88] | H. Chen, D. Gu, H. Zhang, L. Xi, T. Lu, L. Deng, U. Kuehn, K. Kosiba, J. Mater. Process. Technol. 289, 116959 (2021) |
[89] | B. Erice, C.C. Roth, D. Mohr, Mech. Mater. 116, 11 (2018) |
[90] | A.K. Srivastava, K. Das, Mater. Lett. 62, 3947 (2008) |
[91] | V. Pustovoit, Y.V. Dolgachev, Y.M. Dombrovskii, V. Duka, Met. Sci. Heat Treat. 62, 369 (2020) |
[92] | X. Li, A. Ramazani, U. Prahl, W. Bleck, Mater. Charact. 142, 179 (2018) |
[93] | D.J. Thomas, Int. J. Adv. Manuf. Technol. 64, 1297 (2013) |
[94] | A. Do Nascimento, V. Ocelík, M. Ierardi, J.T.M. De Hosson, Surf. Coat. Technol. 202, 4758 (2008) |
[95] | A. Kumar, K. Das, Open J. Met. 5, 11 (2015) |
[96] | C. Tan, J. Zou, D. Wang, W. Ma, K. Zhou, Compos. Pt. B 236, 109820 (2022) |
[97] | R. Guicheteau, J.L. Bobet, T. Miyasaki, A. Kawasaki, Y. Lu, J.F. Silvain, J. Alloys Compd. 724, 711 (2017) |
[98] | R. Chen, B. Li, Y. Li, Z. Liu, X. Long, H. Yi, X. Wang, C. Jiang, M. Huang, Int. J. Fatigue 130, 105276 (2020) |
[99] | A. Kennedy, D. Weston, M. Jones, Mater. Sci. Eng. A 316, 32 (2001) |
[100] | S. Wu, Y. Qin, D. Fu, L. Fan, H. Chen, H. Hong, Ceram. Int. 46, 15972 (2020) |
[101] | S. Lartigue-Korinek, M. Walls, N. Haneche, L. Cha, L. Mazerolles, F. Bonnet, Acta Mater. 98, 297 (2015) |
[102] | R. Chen, B. Li, Y. Li, X. Wang, C. Jiang, M. Huang, Mater. Sci. Eng. A 823, 141736 (2021) |
[103] | Q. Cen, Y. Jiang, R. Zhou, Y. Xu, J. Wang, J. Mater. Eng. Perform. 20, 1447 (2011) |
[104] | J. Pelleg, Mater. Sci. Eng. A 269, 225 (1999) |
[105] | Z. Li, H. Wei, Q. Shan, Y. Jiang, R. Zhou, J. Feng, J. Mater. Res. 31, 2376 (2016) |
[106] | T. Sritharan, L. Chan, L. Tan, N. Hung, Mater. Charact. 47, 75 (2001) |
[107] | Z. Luo, B. He, Y. Li, M. Huang, Metall. Mater. Trans. A 48, 1981 ( (2017) |
[108] | D. Janicki, Surf. Coat. Technol. 406, 126634 (2021) |
[109] | A. Safarian, M. Subaşi, Ç. Karataş, Int. J. Adv. Manuf. Technol. 89, 2165 ( (2017) |
[110] | X. Zhao, Q. Wei, N. Gao, E. Zheng, Y. Shi, S. Yang, J. Mater. Process. Technol. 270, 8 (2019) |
[111] | R. Licheri, R. Orru, G. Cao, A. Crippa, R. Scholz, Ceram. Int. 29, 519 (2003) |
[112] | B. Li, Y. Liu, L. He, H. Cao, S. Gao, J. Li, Int. J. Cast. Metals Res. 23, 211 (2010) |
[113] | H. Springer, R.A. Fernandez, M.J. Duarte, A. Kostka, D. Raabe, Acta Mater. 96, 47 (2015) |
[114] | G. Manohar, A. Dey, K. Pandey, S. Maity, In AIP Conference. Proceedings. (AIP Publishing LLC, 2018), p. 020041 |
[115] | M. Alsawat, T. Altalhi, N. Alotaibi, Z. Zaki, Results Phys. 13, 102292 (2019) |
[116] | C. Lu, S. Ren, J. Wang, G. Yu, Key Eng. Mater. 562, 837 (2013) |
[117] | M.R. Ghomashchi, A. Vikhrov, J. Mater. Process. Technol. 101, 1 (2000) |
[118] | P. Li, X. Li, Y. Li, M. Gong, C. Tian, W. Tong, J. Mater. Eng. Perform. 28, 7816 (2019) |
[119] | A. Anal, T. Bandyopadhyay, K. Das, J. Mater. Process. Technol. 172, 70 (2006) |
[120] | Y. Pan, A. Liu, L. Huang, Y. Du, Y. Jin, X. Yang, J. Zhang, J. Alloys Compd. 784, 519 (2019) |
[121] | A. Amosov, A. Samboruk, I. Yatsenko, V. Yatsenko, Int. J. Self-Propag. High-Temp. Synth. 28, 10 (2019) |
[122] | H. Zhu, H. Wang, L. Ge, C. Shi, S. Wu, Trans. Nonferrous Met. Soc. China 17, 590 (2007) |
[123] | S.S. Kumari, U.T.S. Pillai, B.C. Pai, J. Alloy. Compd. 509, 2503 (2011) |
[124] | X. Chu, H. Che, P. Vo, R. Chakrabarty, B. Sun, J. Song, S. Yue, Surf. Coat. Technol. 324, 353 (2017) |
[125] | E. Castrodeza, C. Mapelli, M. Vedani, S. Arnaboldi, P. Bassani, A. Tuissi, J. Mater. Eng. Perform. 18, 484 (2009) |
[126] | S. Suresh, Fundamentals of Metal-Matrix Composites (Elsevier, Amsterdam, 2013) |
[127] | A. Kennedy, J. Wood, B. Weager, J. Mater. Sci. 35, 2909 (2000) |
[128] | E. Carreno-Morelli, T. Cutard, R. Schaller, C. Bonjour, Mater. Sci. Eng. A 251, 48 (1998) |
[129] | R. Voytovych, V. Bougiouri, N. Calderon, J. Narciso, N. Eustathopoulos, Acta Mater. 56, 2237 (2008) |
[130] | L. Zhong, M. Hojamberdiev, F. Ye, H. Wu, Y. Xu, Ceram. Int. 39, 731 (2013) |
[131] | H. Wang, Q. Jiang, B. Ma, Y. Wang, F. Zhao, J. Alloys Compd. 391, 55 (2005) |
[132] | B. Qiu, S. Xing, Q. Dong, H. Liu, Tribol. Int. 142, 105979 (2020) |
[133] | S. Rajagopal, J. Appl. Metalworking. 1, 3 (1981) |
[134] | D. Stawarz, K. Kulkarni, R. Miclot, K. Iyer, Cast. Steel Weapon Compon. (1976) |
[135] | H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida, Mater. Sci. Eng. A 495, 282 (2008) |
[136] | A. Maleki, B. Niroumand, A. Shafyei, Mater. Sci. Eng. A 428, 135 (2006) |
[137] | R. Li, L. Liu, L. Zhang, J. Sun, Y. Shi, B. Yu, J. Mater. Sci. Technol. 33, 404 (2017) |
[138] | S.J.S. Chelladurai, R. Arthanari, Surf. Rev. Lett. 26, 1850125 (2019) |
[139] | B. Yao, Z. Zhou, Z. Chen, J. Wang, Steel Res. Int. 63, 543 (2020) |
[140] | D. Lu, J. Wang, J. Yu, Y. Jiang, J. Wuhan, Univ. Technol.-Mat. Sci. Edit. 33, 164 (2018) |
[141] | H. Khodaverdizadeh, B. Niroumand, Mater. Des. 32, 4747 (2011) |
[142] | J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, Z. Fan, J. Mater. Process. Technol. 283, 116699 (2020) |
[143] | W. Jiang, J. Zhu, G. Li, F. Guan, Y. Yu, Z. Fan, J. Mater. Sci. Technol. 88, 119 (2021) |
[144] | M. Vattur Sundaram, K. B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, In European Powder Metallurgy Congress and Exhibition, Euro PM 2018; Bilbao Exhibition Centre (BEC) Bilbao; Spain; 14 October 2018 through 18 October 2018; Code 1568752020) |
[145] | R.M. German, P. Suri, S.J. Park, J. Mater. Sci. 44, 1 (2009) |
[146] | J. Liu, X. Zhou, P. Tatarko, Q. Yuan, L. Zhang, H. Wang, Z. Huang, Q. Huang, J. Adv. Ceram. 9, 5 (2020) |
[147] | P. Li, X. Li, Y. Li, M. Gong, W. Tong, In AIP Conference Proceedings (AIP Publishing LLC, 2018), p. 020012 |
[148] | P. Persson, A.E. Jarfors, S. Savage, J. Mater. Process. Technol. 127, 131 (2002) |
[149] |
Y. Liu, Y. Zhang, S. Ortega, M. Ibáñez, K.H. Lim, A. Grau-Carbonell, S. Martí-Sánchez, K.M. Ng, J. Arbiol, M.V. Kovalenko, Nano Lett. 18, 2557 (2018)
DOI PMID |
[150] | P. Ninpetch, A. Luechaisirikul, M. Morakotjinda, T. Yotkaew, R. Krataitong, N. Tosangthum, S. Mahathanabodee, R. Tongsri, Mater. Today Proc. 5, 9409 (2018) |
[151] | A. Mertens, S. Reginster, Q. Contrepois, T. Dormal, O. Lemaire, Mater. Sci. Forum 783, 898 (2014) |
[152] | S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck, J.P. Kruth, Adv. Eng. Mater. 21, 1801244 (2019) |
[153] | M. Wilhelm, K. Wissenbach, A. Gasser, D.E. Patent, 19649865C1, (1996) |
[154] | C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2, 041101 (2015) |
[155] | B. AlMangour, Y.K. Kim, D. Grzesiak, K.A. Lee, Compos. Pt. B-Eng. 156, 51 (2019) |
[156] | B. AlMangour, D.J.M. Grzesiak, Mater. Des. 104, 141 (2016) |
[157] | S. Huang, Q. Chen, L. Ji, K. Wang, G. Huang, Acta Metall. Sin.-Engl. Lett. 37, 196 (2024) |
[158] | N. Kang, W. Ma, L. Heraud, M. El Mansori, F. Li, M. Liu, H. Liao, Addit. Manuf. 22, 104 (2018) |
[159] | E. Kim, K. Lee, Y. Moon, J. Mater. Process. Technol. 105, 42 (2000) |
[160] | F. Qiu, H. Zhang, C.L. Li, Z.F. Wang, F. Chang, H.Y. Yang, X. Han, Q.C. Jiang, Mater. Sci. Eng. A 819, 141485 (2021) |
[161] | C.L. Atwood, Rapid Prototyping J. 102, 103 (1997) |
[162] | L. Niu, M. Hojamberdiev, Y. Xu, J. Mater. Process. Technol. 210, 1986 ( (2010) |
[163] | Z. Mei, Y. Yan, K. Cui, Mater. Lett. 57, 3175 (2003) |
[164] | C. Wang, H. Gao, Y. Dai, X. Ruan, J. Shen, J. Wang, B. Sun, J. Alloys Compd. 490, 9 (2010) |
[165] | A. Ramanathan, P.K. Krishnan, R. Muraliraja, J. Manuf. Process. 42, 213 (2019) |
[166] | S. Sahoo, B.B. Jha, A. Mandal, Mater. Sci. Technol. 37, 1153 (2021) |
[167] | P. Jha, P. Gupta, D. Kumar, O. Parkash, J. Compos. Mater. 48, 2107 ( (2014) |
[168] | A. Kumar, M. Banerjee, U. Pandel, Powder Technol. 331, 41 (2018) |
[169] | R. Bhattacharyya, A. Iqbal, T. Gaur, P. Gupta, Mater. Today Proc. 38, 305 (2021) |
[170] | A.A. Cavalheiro, Powder Metallurgy, (Intechopen, London, 2018), pp.45-63 |
[171] | B. Meher, R. Saha, D. Chaira, J. Alloys Compd. 872, 159688 (2021) |
[172] | M. Godec, B.Š Batič, D. Mandrino, A. Nagode, V. Leskovšek, S.D. Škapin, M. Jenko, Mater. Charact. 61, 452 (2010) |
[173] | K. Sairam, J. Sonber, T.C. Murthy, C. Subramanian, R. Fotedar, P. Nanekar, R. Hubli, Int. J. Refract. Met. Hard Mater. 42, 185 (2014) |
[174] | B. Li, Y. Liu, J. Li, H. Cao, L. He, J. Mater. Process. Technol. 210, 91 (2010) |
[175] | M. Radajewski, S. Decker, L. Krüger, Measurement 147, 106863 (2019) |
[176] |
A. Mercier, F. Adam, D. Labrousse, B. Revol, A. Pasko, F. Mazaleyrat, EPE J. 29, 161 (2019)
DOI |
[177] | B. Klotz, K. Cho, R. J. Dowding, R. D. Sisson Jr, in 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B:Ceramic Engineering and Science Proceedings, (Wiley Online Library,(2001), p. 27 |
[178] |
L. Huang, Y. Pan, J. Zhang, A. Liu, Y. Du, F. Luo, J. Mater. Res. Technol. 9, 6116 (2020)
DOI |
[179] | B. Li, Y. Liu, H. Cao, L. He, J. Li, Mater. Lett. 63, 2010 ( (2009) |
[180] | I.P. Borovinskaya, A.A. Gromov, E.A. Levashov, Y.M. Maksimov, A.S. Mukasyan, A.S. Rogachev, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products (Elsevier, Amsterdam, 2017) |
[181] | E. Levashov, A. Mukasyan, A. Rogachev, D. Shtansky, Int. Mater. Rev. 62, 203 (2017) |
[182] | M.K. Ziatdinov, I. Shatokhin, L. Leont’ev, Steel Transl. 48, 269 (2018) |
[183] | G. Wang, Y. Li, Y. Gao, L. Niu, Wuhan Univ. Technol.-Mater. Sci. Ed. 34, 769 (2019) |
[184] | Z. Zou, Y. Wu, C. Yin, X. Li, Wuhan Univ. Technol.-Mater. Sci. Ed. 22, 706 (2007) |
[185] | S. S. Kalambaeva, E. Korosteleva,G. Pribytkov, in 2014 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), (IEEE 2014), p. 1 |
[186] | Y. Yang, H. Wang, Y. Liang, R. Zhao, Q. Jiang, Mater. Sci. Eng. A 445, 398 (2007) |
[187] | E. Olejnik, J. Sobczak, M. Szala, P. Kurtyka, T. Tokarski, A. Janas, J. Mater. Process. Technol. 308, 117688 (2022) |
[188] | M. Aydin, R. Gürler, M. Türker, Phys. Metals Metallogr. 107, 206 (2009) |
[189] | Ö. ESKi, M.A.M. Elhemsheri, J. Glob. Sci. Research 6, 1128 (2021) |
[190] | H. Klaasen, J. Kübarsepp, A. Laansoo, M. Viljus, Int. J. Refract. Met. Hard Mater. 28, 580 (2010) |
[191] | H. Kejanli, Adv. Compos. Lett. 29, 2633366X20917983 (2020) |
[192] | E. Akca, A. Gürsel, Period. Eng. Nat. Sci. 3 (2015) |
[193] |
M.N. Avettand-Fènoël, K. Naji, P. Pouligny, J. Manuf. Process. 45, 557 (2019)
DOI |
[194] | M. Hasan, J. Zhao, Z. Huang, L. Chang, H. Zhou, Z. Jiang, Fusion Eng. Des. 133, 39 (2018) |
[195] | M. Hasan, J. Zhao, Z. Huang, D. Wei, Z. Jiang, Int. J. Adv. Manuf. Technol. 103, 3247 (2019) |
[196] | A. Rahimi-Vahedi, M. Adeli, H. Saghafian, Surf. Coat. Technol. 347, 217 (2018) |
[197] | S. Dayanand, B. S. Babu, in IOP Conf. Ser.: Mater. Sci. Eng. (IOP Publishing, 2020), p. 012038 |
[198] | H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, Z. Xie, Powder Technol. 246, 456 (2013) |
[199] | H. Zhu, B. Hua, J. Huang, J. Li, G. Wang, Z. Xie, Tribol.- Mater. Surf. Interfaces 8, 165 (2014) |
[200] | R. Shashanka, D. Chaira, Powder Technol. 278, 35 (2015) |
[201] | F. Saba, E. Kabiri, J.V. Khaki, M.H. Sabzevar, Powder Technol. 288, 76 (2016) |
[202] | S.R. Oke, O.O. Ige, O.E. Falodun, A.M. Okoro, M.R. Mphahlele, P.A. Olubambi, Int. J. Adv. Manuf. Technol. 102, 3271 (2019) |
[203] | M.J. Koczak, K.S. Kumar, U.S. Patent 4,808,372, 28 (1989) |
[204] | P. Sahoo, M.J. Koczak, Mater. Sci. Eng. A 131, 69 (1991) |
[205] | C. Cui, R. Wu, Y. Li, Y. Shen, J. Mater. Process. Technol. 100, 36 (2000) |
[206] | J. Haibo, K. Chen, Z. Heping, S. Agathopoulos, O. Fabrichnaya, J. Ferreira, J. Cryst. Growth 281, 639 (2005) |
[207] | A. Singer, S. Ozbek, Powder Metall. 28, 72 (1985) |
[208] | R. Della Gatta, A. Viscusi, A.S. Perna, A. Caraviello, A. Astarita, Mater. Manuf. Process. 36, 281 (2021) |
[209] | T. Lampke, B. Wielage, H. Pokhmurska, C. Rupprecht, S. Schuberth, R. Drehmann, F. Schreiber, Surf. Coat. Technol. 205, 3671 (2011) |
[210] | S.A. Alidokht, P. Vo, S. Yue, R.R. Chromik, Wear 376, 566 (2017) |
[211] | M. Ksiazek, L. Boron, M. Radecka, M. Richert, A. Tchorz, J. Mater. Eng. Perform. 25, 502 (2016) |
[212] | Z. Chu, F. Wei, X. Zheng, C. Zhang, Y. Yang, J. Alloys Compd. 785, 206 (2019) |
[213] | R. Sekhar, T. Singh, J. Mater. Res. Technol. 4, 197 (2015) |
[214] | W.H. Kan, C. Albino, D. Dias-da-Costa, K. Dolman, T. Lucey, X. Tang, L. Chang, G. Proust, J. Cairney, Mater. Charact. 136, 196 (2018) |
[215] | G. Tian, Y. Xu, L. Fu, B. Mao, S. Zhao, Y. Wang, A. Shan, Mater. Sci. Eng. A 893, 146133 (2024) |
[216] | Y. Zhang, Y. Wu, Y. Tang, J. Ma, B. Mao, Y. Xue, H. Xing, J. Zhang, B. Sun, J. Mater. Sci. Technol. 177, 1 (2024) |
[217] | D.R. Askeland, P.P. Phulé, W.J. Wright, D. Bhattacharya, The Science and Engineering of Materials (Springer, London, 2003) |
[218] | J. Li, B. Zong, Y. Wang, W. Zhuang, Mater. Sci. Eng. A 527, 7545 (2010) |
[219] | L. Sun, Y.M. Wu, Z.P. Huang, J.X. Wang, Acta Mech. Sin. 20, 676 (2004) |
[220] | X. Zhang, T. Yang, J. Liu, X. Luo, J. Wang, J. Mater. Sci. 45, 3457 (2010) |
[221] | Y. Hua, L. Gu, Compos. Pt. B 45, 1464 (2013) |
[222] | S. Chen, P. Seda, M. Krugla, A. Rijkenberg, Mater. Sci. Technol. 32, 992 (2016) |
[223] | R. Xiong, H. Kwon, G. Karthik, G.H. Gu, P. Asghari-Rad, S. Son, E.S. Kim, H.S. Kim, Mater. Lett. 303, 130510 (2021) |
[224] | R. Rana, C. Liu, Can. Metall. Q. 53, 300 (2014) |
[225] | B. Mao, X. Zhang, P.L. Menezes, Y. Liao, Materialia 8, 100444 (2019) |
[226] | P. Zhang, S. Zeng, Z. Zhang, W. Li, Res. Dev. 10, 374 (2013) |
[227] | A. Siddaiah, B. Mao, Y. Liao, P.L. Menezes, Surf. Coat. Technol. 351, 188 (2018) |
[228] | B. Mao, A. Siddaiah, P.L. Menezes, Y. Liao, J. Mater. Process. Technol. 257, 227 (2018) |
[229] | M. Razavi, M.R. Rahimipour, A.H. Rajabi-Zamani, Mater. Sci. Eng. A 454, 144 (2007) |
[230] | P. Gupta, D. Kumar, O. Parkash, A. Jha, J. Compos. 2014, 1 (2014) |
[231] | H. Bai, L. Zhong, P. Cui, Z. Shang, Z. Lv, Y. Xu, Vacuum 176, 109302 (2020) |
[232] | Z. Zhang, Y. Chen, Y. Zhang, K. Gao, L. Zuo, Y. Qi, Y. Wei, J. Alloys Compd. 704, 260 (2017) |
[233] | Z. Liao, X. Huang, F. Zhang, Z. Li, S. Chen, Q. Shan, Int. J. Refract. Met. Hard Mater. 114, 106265 (2023) |
[234] | S. Wang, D. Shu, P. Shi, X. Zhang, B. Mao, D. Wang, P.K. Liaw, B. Sun, J. Mater. Sci. Technol. 187, 72 (2024) |
[235] | X. Zhang, B. Mao, Y. Liao, Y. Zheng, J. Mater. Res. 35, 1 (2020) |
[236] | M. Liu, H. Hu, J. Tian, G. Xu, Acta Metall. Sin. 57, 749 (2020) |
[237] | K. Parashivamurthy, P. Sampathkumaran, S. Seetharamu, Proceedings of International and INCCOM-6 Conference on Future Trends in Composite Materials and Processing, 665 (2008) |
[238] | S. Zhao, X. Shen, J. Yang, W. Teng, Y. Wang, Opt. Laser Technol. 103, 239 (2018) |
[239] | Y. Wang, C. Zhang, Y. Zong, H. Yang, Adv. Compos. Mater. 22, 299 (2013) |
[240] | B. Song, S. Dong, P. Coddet, G. Zhou, S. Ouyang, H. Liao, C. Coddet, J. Alloys Compd. 579, 415 (2013) |
[241] | R.E. Smallman, R.J. Bishop, Modern physical metallurgy and materials engineering, (Butterworth-Heinemann, 1999) |
[242] | B. Rabin, R. German, Metall. Trans. A 19, 1523 (1988) |
[243] | G. Królczyk, E. Feldshtein, L. Dyachkova, M. Michalski, T. Baranowski, R. Chudy, Materials 13, 2892 (2020) |
[244] | M. Şimşir, J. Mater. Sci. 42, 6701 (2007) |
[245] | B. Mao, Dissertation, University of Nevada, (2020) |
[246] | E.E. Feldshtein, L.N. Dyachkova, G.M. Królczyk, Mater. Sci. Eng. A 756, 455 (2019) |
[247] | Z. Li, P. Wang, Q. Shan, Y. Jiang, H. Wei, J. Tan, Materials 11, 984 (2018) |
[248] | R. Ishraaq, S.M. Nahid, S. Chhetri, O. Gautam, A. Afsar, Comput. Mater. Sci. 174, 109486 (2020) |
[1] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[2] | Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312. |
[3] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[4] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[5] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[6] | Jian Zang, Jianrong Liu, Qingjiang Wang, Haibing Tan, Bohua Zhang, Xiaolin Dong, Zibo Zhao. Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 107-120. |
[7] | Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138. |
[8] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[9] | Han Wang, Shijie Sun, Naicheng Sheng, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 151-163. |
[10] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[11] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[12] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[13] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[14] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[15] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||