Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (6): 1047-1065.DOI: 10.1007/s40195-024-01678-0
Previous Articles Next Articles
Mengwei Wu1, Chunmei Ma2, Ruiping Liu1(), Huadong Fu2(
)
Received:
2023-11-06
Revised:
2023-12-11
Accepted:
2023-12-12
Online:
2024-06-10
Published:
2024-03-05
Contact:
Ruiping Liu,Mengwei Wu, Chunmei Ma, Ruiping Liu, Huadong Fu. Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1047-1065.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Gyroid unit cell surface, sheet Gyroid unit cell and Gyroid TPMS lattice structure; front view of CAD model of Gyroid TPMS lattice structure with different b unit sizes and c volume fractions
Fig. 2 a SEM images and b particle size distribution of CuAlMn alloy powder; photographs of SLM-fabricated CuAlMn Gyroid TPMS structures with varying c unit cell sizes and d volume fractions
Laser power (W) | Scanning speed (mm s−1) | Scanning distance (mm) | Layer thickness (µm) | Energy density (J mm−3) |
---|---|---|---|---|
240 | 1000 | 0.11 | 25 | 87.27 |
Table 1 SLM forming parameters
Laser power (W) | Scanning speed (mm s−1) | Scanning distance (mm) | Layer thickness (µm) | Energy density (J mm−3) |
---|---|---|---|---|
240 | 1000 | 0.11 | 25 | 87.27 |
Fig. 5 High-magnification SEM image of the CuAlMn SMA Gyroid TPMS lattice structure with a unit size of 5.25 mm and a volume fraction of 10%: a top view; b side view
Fig. 6 Volume fraction of the Gyroid TPMS CuAlMn SMAs with different a unit sizes and b volume fractions and the volume fraction percentage deviation from the designed CAD model
Fig. 7 Compression mechanical response of CuAlMn Gyriod lattice structure with different unit geometries under RT; a, c stress-strain curves of samples with different a unit sizes and c volume fractions; changes in compressive modulus, yield strength and ultimate strength under different b unit sizes and d volume fractions
Fig. 10 Relationship of the elastic recovery strain (εe), superelastic recovery strain (εSE) and residual strain (εr) with the total loading strain (εt) of CuAlMn SMAs Gyroid TPMS lattice structure with different a-c unit sizes and d-f volume fractions (*CuAlMn SMAs refer to solid CuAlMn shape memory alloys prepared by SLM; the others represent CuAlMn SMAs with Gyroid TPMS lattice structures)
Fig. 11 Shape memory recovery performance after heating of CuAlMn SMAs Gyroid TPMS lattice structure with different a unit size and b volume fractions
Fig. 12 Relationship between superelastic strain εSE and applied strain εt − εe for a unit size and b volume fractions (*CuAlMn SMAs refer to solid CuAlMn shape memory alloys prepared by SLM; the others represent CuAlMn SMAs with Gyroid TPMS lattice structures)
[1] | Y. Jin, S.J. Zou, B.C. Pan, G.Y. Li, L. Shao, J.K. Du, Addit. Manuf. 56, 102899 (2022) |
[2] | K. Zoubkova, H. Seiner, P. Sedlak, E. Villa, M. Tahara, H. Hosoda, V. Chernenko, Acta Mater. 224, 117530 (2022) |
[3] | Y.K. Zhang, L.Y. Xu, L. Zhao, D.Y. Lin, M.Q. Liu, X.Y. Qi, Y.D. Han, J. Mater. Sci. Technol. 152, 1 (2023) |
[4] | H.Y. Wang, D. Xu, J.C. Feng, S. Chao, H. Sun, MRS Commun. 13, 526 (2023) |
[5] | P. Wei, P. Hua, M. Xia, K. Yan, H. Lin, S. Yi, J. Lu, F. Ren, Q. Sun, Acta Mater. 240, 118269 (2022) |
[6] | M.W. Wu, Y. Xiao, Z.F. Hu, R.P. Liu, C.M. Ma, Front. Mater. Sci. 16, 220616 (2022) |
[7] | S. Singh, I.A. Palani, S. Dehgahi, A.J. Qureshi, A.N. Jinoop, C.P. Paul, K.G. Prashanth, J. Alloys Compd. 961, 171029 (2023) |
[8] | T. Grabec, P. Sedlak, K. Zoubkova, M. Sevcik, M. Janovska, P. Stoklasova, H. Seiner, Acta Mater. 208, 116718 (2021) |
[9] | I. Kaya, H. Tobe, H.E. Karaca, E. Acar, Y. Chumlyakov, Acta Metall. Sin. -Engl. Lett. 29, 282 (2016) |
[10] | S.Q. Li, Y.Q. Huang, L. Cai, H.B. Peng, J.Z. Yan, Y.H. Wen, Mater. Sci. Eng. A 881, 145396 (2023) |
[11] | Y.N. Wang, T.F. Jing, H.B. Peng, W. He, J.Z. Yan, S.L. Wang, N. Li, Y.H. Wen, J. Alloys Compd. 915, 165401 (2022) |
[12] | M. Liu, J.N. Zhu, V.A. Popovich, E. Borisov, J.M.C. Mol, Y. Gonzalez-Garcia, Rare Met. 42, 3114 (2023) |
[13] | V. Novak, P. Sittner, S. Ignacova, T. Cernoch, Mater. Sci. Eng. A 438-440, 755 (2006) |
[14] | J.L. Liu, Z.H. Chen, H.Y. Huang, J.X. Xie, Mater. Sci. Eng. A 696, 315 (2017) |
[15] | B.Q. Jiao, Q.Y. Zhao, Y.Q. Zhao, W.W. Zhang, W. Zhang, Y.C. Li, Z.W. Hu, X.Q. Gao, C.X. Cui, J. Alloys Compd. 945, 169369 (2023) |
[16] | H.D. Fu, S. Xu, H.M. Zhao, H.B. Dong, J.X. Xie, J. Alloys Compd. 714, 154 (2017) |
[17] | L.J. Li, H.H. You, X.J. Xin, S. Fang, Scr. Mater. 136, 106 (2017) |
[18] | H.D. Fu, S.L. Song, L.C. Zhuo, Z.H. Zhang, J.X. Xie, Mater. Sci. Eng. A 650, 218 (2016) |
[19] | J.L. Liu, H.Y. Huang, J.X. Xie, Int. J. Min. Met. Mater. 23, 1157 (2016) |
[20] | M.H. Li, J.L. Liu, S.L. Yan, W.X. Yan, B.W. Shi, J. Alloys Compd. 821, 153213 (2020) |
[21] | J.L. Liu, M.H. Li, X. Li, W.X. Yan, W. Huang, S.L. Yan, J. Alloys Compd. 781, 621 (2019) |
[22] | N. Wang, G.K. Meenashisundaram, S. Chang, J.Y.H. Fuh, T. Dheen, A.S. Kumar, J. Mech. Behav. Biomed. Mater. 129, 105151 (2022) |
[23] | L. Zhang, Q.P. Ma, J.H. Ding, S. Qu, J. Fu, M.W. Fu, X. Song, M.Y. Wang, Addit. Manuf. 59, 103185 (2022) |
[24] | X.L. Zhang, Y. Jiang, S.P. Wang, S. Wang, Z.Q. Wang, Z.L. Yu, Z.H. Zhang, L.Q. Ren, Acta Metall. Sin. -Engl. Lett. 36, 926 (2023) |
[25] | C. Zhang, H. Qiao, L. Yang, W. Ouyang, T. He, B. Liu, X. Chen, N. Wang, C. Yan, Compos. Struct. 327, 117642 (2024) |
[26] | J.R. Tang, N.U. Tariq, Z.P. Zhao, M.X. Guo, H.H. Liu, Y.P. Ren, X.Y. Cui, Y.F. Shen, J.Q. Wang, T.Y. Xiong, Acta Metall. Sin. -Engl. Lett. 35, 1465 (2022) |
[27] | L. Han, S.A. Che, Adv. Mater. 30, 1705708 (2018) |
[28] | K. Hayashi, R. Kishida, A. Tsuchiya, K. Ishikawa, A.C.S. Appl, Mater. Interfaces 15, 34570 (2023) |
[29] | I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, I.A. Ashcroft, Mater. Des. 155, 220 (2018) |
[30] | L.R. Meza, G.P. Phlipot, C.M. Portela, A. Maggi, L.C. Montemayor, A. Comella, D.M. Kochmann, J.R. Greer, Acta Mater. 140, 424 (2017) |
[31] | I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, R.J.M. Hague, Polymer 152, 62 (2018) |
[32] | S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov, R.D. Noebe, Acta Mater. 134, 211 (2017) |
[33] | M. Speirs, B. Van Hooreweder, J. Van Humbeeck, J.P. Kruth, J. Mech. Behav. Biomed. Mater. 70, 53 (2017) |
[34] | L.Q. Sun, K.Y. Chen, P. Geng, Y. Zhou, S.F. Wen, Y.S. Shi, J. Manuf. Process. 101, 1091 (2023) |
[35] |
L. Yang, C.Z. Yan, W.C. Cao, Z.F. Liu, B. Song, S.F. Wen, C. Zhang, Y.S. Shi, S.F. Yang, Acta Mater. 181, 49 (2019)
DOI |
[36] | B.B. Ravichander, S.H. Jagdale, A. Jabed, G. Kumar, Int. J. Mech. Sci. 254, 108439 (2023) |
[37] | M.M. Costa, F. Bartolomeu, J. Palmeiro, B. Guimaraes, N. Alves, G. Miranda, F.S. Silva, Tribol. Int. 156, 106830 (2021) |
[38] | L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016) |
[39] | L.Y. Chen, S.X. Liang, Y.J. Liu, L.C. Zhang, Mater. Sci. Eng. R 146, 100648 (2021) |
[40] | J. Fu, J.H. Ding, L. Zhang, S. Qu, X. Song, M. Fu, Addit. Manuf. 62, 103406 (2023) |
[41] | C.Z. Yan, L. Hao, A. Hussein, Q.S. Wei, Y.S. Shi, Mater. Sci. Eng. C 75, 1515 (2017) |
[42] | H. Osman, L. Liu, Trans. Nonferrous Met. Soc. China 33, 1 (2023) |
[43] | L.C. Zhang, L.Y. Chen, S.F. Zhou, Z. Luo, J. Alloys Compd. 936, 168099 (2023) |
[44] | D.Y. Fan, Z. Yi, X. Feng, W.Z. Tian, D.K. Xu, A.M. Cristino Valentino, Q. Wang, H.C. Sun, Rare Met. 41, 580 (2022) |
[45] | H.D. Zheng, L.L. Liu, C.L. Deng, Z.F. Shi, C.Y. Ning, Rare Met. 38, 561 (2019) |
[46] | C.D. Li, H.M. Gu, W. Wang, S. Wang, L.L. Ren, Y.C. Zhai, Z.B. Wang, Z. Ming, Rare Met. 40, 2530 (2021) |
[47] | B.B. Babamiri, B. Barnes, A. Soltani-Tehrani, N. Shamsaei, K. Hazeli, Addit. Manuf. 46, 102143 (2021) |
[48] | X. Yang, Q. Yang, Y.S. Shi, L. Yang, S.Q. Wu, C.Z. Yan, Y.S. Shi, Addit. Manuf. 54, 102737 (2022) |
[49] | L. Yang, M. Ferrucci, R. Mertens, W. Dewulf, C.Z. Yan, Y.S. Shi, S.F. Yang, J. Mater. Process. Technol. 275, 116367 (2020) |
[50] | K.D. Traxel, C. Groden, J. Valladares, A. Bandyopadhyay, W.M. Keck, Mater. Sci. Eng. A 809, 140925 (2021) |
[51] | O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Addit. Manuf. 19, 167 (2018) |
[52] | S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, J.P. Kruth, Mater. Sci. Eng. A 528, 7423 (2011) |
[53] | C.Z. Yan, L. Hao, A. Hussein, P. Young, D. Raymont, Mater. Des. 55, 533 (2014) |
[54] | I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, R.J.M. Hague, Mater. Sci. Eng. A 670, 264 (2016) |
[55] | L. Yang, C.J. Han, H.Z. Wu, L. Hao, Q.S. Wei, C.Z. Yan, Y.S. Shi, J. Mech. Behav. Biomed. Mater. 109, 103843 (2020) |
[56] | L.J. Gibson, M.F. Ashby, J.S. Schajer, Proc. R. Soc. A Math. 382, 25 (1982) |
[57] | I. Maskery, A.O. Aremu, M. Simonelli, C. Tuck, R.D. Wildman, I.A. Ashcroft, R.J.M. Hague, Exp. Mech. 55, 1261 (2015) |
[58] | I. Maskery, I.A. Ashcroft, Addit. Manuf. 36, 101548 (2020) |
[59] | C.J. Han, Y. Li, Q. Wang, S.F. Wen, Q.S. Wei, C.Z. Yan, L. Hao, J. Liu, Y.S. Shi, J. Mech. Behav. Biomed. Mater. 80, 119 (2018) |
[60] | C.Z. Yan, L. Hao, A. Hussein, P. Young, J.T. Huang, W. Zhu, Mater. Sci. Eng. A 628, 238 (2015) |
[61] | S. Dadbakhsh, M. Speirs, J.-P. Kruth, J. Van Humbeeck, CIRP Annals Manuf. Technol. 64, 209 (2015) |
[62] | C.Y. Xiong, Y. Li, J. Zhang, Y. Wang, W.T. Qu, Y.C. Ji, L.S. Cui, X.B. Ren, J. Alloys Compd. 853, 157090 (2021) |
[63] | X. Wang, J.M. Wang, H. Hua, C.B. Jiang, Rare Met. 42, 572 (2023) |
[64] | M.W. Wu, Z.F. Hu, B.B. Yang, Y. Tao, R.P. Liu, C.M. Ma, L. Zhang, Rare Met. 42, 4324 (2023) |
[1] | Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144. |
[2] | Xiaolong Zhang, Yue Jiang, Shupeng Wang, Shuo Wang, Ziqiang Wang, Zhenglei Yu, Zhihui Zhang, Luquan Ren. Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 926-936. |
[3] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[4] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[5] | Huan Li, Shuai Zeng, Yong-Kang Zhou, Hai-Long Li, Hong-Wei Zhang, Hai-Feng Zhang, Zheng-Wang Zhu. High Tensile Strength and Superelasticity of Directionally Solidified Ti30Ni30Fe10Hf10Nb20 Eutectic High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1583-1590. |
[6] | Wei Zhang, Xin Zhang, Qian Wang, Qing-Suo Liu. Gamma-phase influence on shape memory properties in Ni-Mn-Co-Ga-Gd high-temperature shape memory alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 471-476. |
[7] | Xin Zhang, Jie-He Sui, Yong-Chao Lei, Wei Cai. Microstructure and Optical Properties of Ti54.5Ni45.5 Nanocrystalline Thin Film [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1231-1235. |
[8] | Xin Zhang,Qing-Suo Liu. Influence of Alloying Element Addition on Cu-Al-Ni High-Temperature Shape Memory Alloy without Second Phase Formation [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 884-888. |
[9] | Xin Zhang, Qing-Suo Liu, Xian-Shun Zeng, Jie-He Sui, Wei Cai, Ai-Lian Liu. Effect of Annealing Temperature on the Shape Memory Properties of Cold-Rolled Dual-Phase Ni-Mn-Ga-Gd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1403-1406. |
[10] | Tian-Wei Liu, Yan-Jun Zheng, Li-Shan Cui. Transformation Sequence Rule of Martensite Plates and Temperature Memory Effect in Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1286-1290. |
[11] | N.C.Si and S.C.Sun Departmentof Materials Engineering,Jiangsu University of Science and Technology,Zhenjiang 212013 , China. EFFECTS OF RARE EARTH MIXTURE ON MECHANICAL PROPERTIES OF CuZnAl SHAPE MEMORY ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(4): 509-514. |
[12] | Y. Huo; Y. Chen;X. Zu and M. Tu( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Physics, Sichuan University, Chengdu 610065, China). STRESS-STRAIN HYSTERESIS OF POLYCRYSTALLINE SMAs─Ⅰ: A MODEL [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(3): 205-210. |
[13] | Y. Chen; Y. Huo; X. Zu; M. Tu and Y. Gou ( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Metal Materials, Sichuan University, Chengdu 610065, China)( Department of Physics, Sichuan University, Chengdu 610065, China)( National Key Lab for Nuclear Fuel and Materials of China, Chengdu 610005, China). STRESS-STRAIN HYSTERESIS OF Cu-Zn-Al POLYCRYSTALLINE SMAs─Ⅱ: EXPERIMENTS AND NUMERICAL SIMULATIONS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(3): 211-215. |
[14] | S.K.Wu(Institute of Materials Science and Engineering, National Taiwan University Taipei, Taiwan 106, China) H.C. Lin(Department of Materials Science, Feng-Chia University. Taichung. Taiwan 407. China). Shape-Memory Intermetallics Development in Taiwan [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(z1): 553-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||