Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 132-144.DOI: 10.1007/s40195-023-01659-9
Previous Articles Next Articles
Junyi Ma1, Lin Yu1, Qing Yang1, Jie Liu1(), Lei Yang1,2(
)
Received:
2023-11-18
Revised:
2023-12-12
Accepted:
2023-12-12
Online:
2024-01-10
Published:
2024-01-28
Contact:
Jie Liu, Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144.
Add to citation manager EndNote|Ris|BibTeX
Ni | C | H | O | N | Ti | |
---|---|---|---|---|---|---|
Wire (wt%) | 55.81 | 0.0100 | 0.0020 | 0.0380 | 0.0050 | Bal. |
Substrate (at.%) | 50.85 | 0.0070 | 0.0009 | 0.0410 | 0.0014 | Bal. |
Table 1 Chemical composition of the as-received wire and substrate
Ni | C | H | O | N | Ti | |
---|---|---|---|---|---|---|
Wire (wt%) | 55.81 | 0.0100 | 0.0020 | 0.0380 | 0.0050 | Bal. |
Substrate (at.%) | 50.85 | 0.0070 | 0.0009 | 0.0410 | 0.0014 | Bal. |
Layer number | Travel speed (mm/s) | Current (A) | Impulse correction (%) | Arc length correction (%) | Swing width (mm) | Swing length (mm) |
---|---|---|---|---|---|---|
L1 | 6 | 130 | − 0.5 | 6 | 8 | 3 |
L2 | 4 | 120 | − 0.5 | 6 | 8 | 3 |
L3 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
L4 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
Ln | 3 | 110 | − 0.5 | 6 | 8 | 3 |
L15 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
Table 2 Process parameters of each layer
Layer number | Travel speed (mm/s) | Current (A) | Impulse correction (%) | Arc length correction (%) | Swing width (mm) | Swing length (mm) |
---|---|---|---|---|---|---|
L1 | 6 | 130 | − 0.5 | 6 | 8 | 3 |
L2 | 4 | 120 | − 0.5 | 6 | 8 | 3 |
L3 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
L4 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
Ln | 3 | 110 | − 0.5 | 6 | 8 | 3 |
L15 | 3 | 110 | − 0.5 | 6 | 8 | 3 |
Specimen number | Heat treatment parameter |
---|---|
HT1 | 800 °C/1 h |
HT2 | 950 °C/1 h |
HT3 | 950 °C/5.5 h |
HT4 | 1050 °C/5.5 h |
Table 3 Heat treatment parameters and specimen number
Specimen number | Heat treatment parameter |
---|---|
HT1 | 800 °C/1 h |
HT2 | 950 °C/1 h |
HT3 | 950 °C/5.5 h |
HT4 | 1050 °C/5.5 h |
Fig. 4 Micromorphologies before and after heat treatment at 800 °C/1 h: a, b SEM images on the X-Z plane before and after heat treatment, respectively; c, d SEM images on the X-Y plane before heat treatment; e, f SEM images on the X-Y plane after heat treatment
Fig. 5 Micromorphologies of Ti2Ni particles after heat treatment after heat treatment at 800 °C/1 h: a bright field TEM images; b selected-area diffraction pattern
Fig. 7 EBSD orientation maps, pole figures and grain size distribution maps of X-Y plane at different heat treatment parameters: a-c as-deposited; d-f HT1; g-i HT2; j-l HT4
Specimen number | As (°C) | Af (°C) | Ms (°C) | Mf (°C) | Ms-Mf (°C) | ΔHA → M (°C) |
---|---|---|---|---|---|---|
As-deposited | − 9.98 | 13.8 | − 16.97 | − 46.44 | 29.47 | 15.89 |
HT1 | − 1.4 | 22.72 | − 8.78 | − 33.89 | 25.11 | 16.64 |
HT2 | − 2.17 | 9.24 | − 17.82 | − 33.21 | 15.39 | 15.94 |
HT3 | − 3.21 | 2.54 | − 19.39 | − 34.46 | 15.07 | 15.41 |
HT4 | − 3.97 | 10.74 | − 16.81 | − 40.73 | 23.92 | 11.2 |
Table 4 Characteristic transformation temperatures and enthalpy of the specimens with different heat treatment parameters
Specimen number | As (°C) | Af (°C) | Ms (°C) | Mf (°C) | Ms-Mf (°C) | ΔHA → M (°C) |
---|---|---|---|---|---|---|
As-deposited | − 9.98 | 13.8 | − 16.97 | − 46.44 | 29.47 | 15.89 |
HT1 | − 1.4 | 22.72 | − 8.78 | − 33.89 | 25.11 | 16.64 |
HT2 | − 2.17 | 9.24 | − 17.82 | − 33.21 | 15.39 | 15.94 |
HT3 | − 3.21 | 2.54 | − 19.39 | − 34.46 | 15.07 | 15.41 |
HT4 | − 3.97 | 10.74 | − 16.81 | − 40.73 | 23.92 | 11.2 |
Fig. 10 Tensile properties at different heat treatment parameters: a, b stress-strain curves of 0° and 90° specimens, respectively; c, d the mechanical values of 0° and 90° specimens, respectively
Fig. 11 Fracture morphologies of 0° and 90° tensile specimens before and after solution treatment at 800 °C/1 h: a, b SEM images of 0° and 90° fracture of the as-deposited specimens, respectively; c, d SEM images of 0° and 90° fracture after solution treatment, respectively
Fig. 12 Superelasticity before and after solution treatment at 800 °C/1 h: a, b the 0° cycle tensile curves of the as-deposited and HT1 specimens, respectively; d, e the 90° cycle tensile curves of the as-deposited and HT1 specimens, respectively; c, f transition of 0° and 90° specimens of recoverable strain ($\varepsilon_{{{\text{re}}}}$) and irreversible strain ($\varepsilon_{{{\text{ir}}}}$), respectively
Fig. 13 Strain recovery rate before and after solution treatment at 800 ℃/1 h: a the strain recovery rate curves of the as-deposited and HT1 0° specimens; b the strain recovery rate curves of the as-deposited and HT1 90° specimens
[1] | C. Greiner, S.M. Oppenheimer, D.C. Dunand, Acta Biomater. 1, 705 (2005) |
[2] | Y. Zhang, S. Attarilar, L. Wang, W. Lu, J. Yang, Y. Fu, Int. J. Bioprint. 7, 15 (2021) |
[3] | J. Sevcikova, M.P. Goldbergova, Biometals 30, 163 (2017) |
[4] | S.A. Fadlallah, N. El-Bagoury, S.M.F.G. El-Rab, R.A. Ahmed, G. El-Ousamii, J. Alloys Compd. 583, 455 (2014) |
[5] | S.F. Ou, B.Y. Peng, Y.C. Chen, M.H. Tsai, Metals 8, 342 (2018) |
[6] | D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 535 (2007) |
[7] | A. Wadood, Adv. Mater. Sci. Eng. 2016, 4173138 (2016) |
[8] | M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Prog. Mater. Sci. 57, 911 (2012) |
[9] | I. Kaya, H.E. Karaca, M. Nagasako, R. Kainuma, Mater. Charact. 159, 110034 (2020) |
[10] | P. Kumar, A.N. Sinha, C.K. Hirwani, A.K. Singh, P.K. Pathak, M. Murugan, A. Saravanan, Trans. Indian Inst. Met. 74, 1333 (2021) |
[11] | D. Sun, S. Jiang, X. Xing, B. Yan, J. Yu, Y. Zhang, Met. Mater. Int. 27, 4901 (2021) |
[12] | M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, Prog. Mater. Sci. 83, 630 (2016) |
[13] | Q. Yang, K. Sun, C. Yang, M. Sun, H. Peng, X. Shen, S. Huang, J. Chen, J. Alloys Compd. 858, 157674 (2021) |
[14] | H.Z. Lu, H.W. Ma, X. Luo, Y. Wang, J. Wang, R. Lupoi, S. Yin, C. Yang, J. Mater. Res. Technol. 15, 6797 (2021) |
[15] | M. Zhao, H. Qing, Y. Wang, J. Liang, M. Zhao, Y. Geng, J. Liang, B. Lu, Mater. Des. 200, 109448 (2021) |
[16] | E. Farber, J.N. Zhu, A. Popovich, V. Popovich, Mater. Today Proc. 30, 761 (2020) |
[17] | Z.L. Yu, Z.Z. Xu, Y.T. Guo, P.W. Sha, R.Y. Liu, R.L. Xin, L.X. Li, L.X. Chen, X.B. Wang, Z.H. Zhang, L.Q. Ren, J. Manuf. Processes 75, 673 (2022) |
[18] | J.B. Zhan, Y.J. Lu, J.X. Lin, Acta Metall. Sin. -Engl. Lett. 34, 1223 (2021) |
[19] | X.L. Zhang, Y. Jiang, S.P. Wang, S. Wang, Z.Q. Wang, Z.L. Yu, Z.H. Zhang, L.Q. Ren, Acta Metall. Sin. -Engl. Lett. 36, 926 (2023) |
[20] | L. Zhang, D. Ren, H. Ji, A. Ma, E.F. Daniel, S. Li, W. Jin, Y. Zheng, NPJ Mater. Degrad. 6, 79 (2022) |
[21] | G.S. Altug-Peduk, S. Dilibal, O. Harrysson, S. Ozbek, Russ. J. Non-Ferrous Met. 62, 357 (2021) |
[22] | A. Bagheri, M.J. Mahtabi, N. Shamsaei, J. Mater. Process. Technol. 252, 440 (2018) |
[23] | J. Dutkiewicz, L. Rogal, D. Kalita, M. Weglowski, S. Blacha, K. Berent, T. Czeppe, A. Antolak-Dudka, T. Durejko, T. Czujko, Superelastic J. Mater. Eng. Perform. 29, 4463 (2020) |
[24] | D. Yan, M. Ghayoor, K. Coldsnow, H. Pirgazi, B. Poorganji, O. Ertorer, K.S. Tan, J. Burns, O.B. Isgor, S. Pasebani, A. Torbati-Sarraf, Addit. Manuf. 50, 102490 (2022) |
[25] | J. Wang, Z. Pan, K. Carpenter, J. Han, Z. Wang, H. Li, Mater. Sci. Eng. A 800, 140307 (2021) |
[26] | I. Ponikarova, I.A. Palani, P. Liulchak, N. Resnina, S. Singh, S. Belyaev, S.S.M. Prabu, S. Jayachandran, V. Kalganov, A. Sahu, R. Bikbaev, U. Karaseva, J. Manuf. Processes 70, 132 (2021) |
[27] | N. Resnina, I.A. Palani, S. Belyaev, S. Singh, A. Kumar, R. Bikbaev, A. Sahu, Shape Mem. Superelast. 8, 5 (2022) |
[28] | Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, J. Lu, Z. Lu, J. Mater. Sci. Technol. 100, 224 (2022) |
[29] | L.Y. Chen, S.X. Liang, Y. Liu, L.C. Zhang, Mater. Sci. Eng. R 146, 100648 (2021) |
[30] | J.C. Wang, R. Zhu, Y.J. Liu, L.C. Zhang, Adv. Powder Mater. 2, 100137 (2023) |
[31] | W.Q. Lu, Y.J. Liu, X. Wu, X.C. Liu, J.C. Wang, Surf. Coat. Technol. 470, 129849 (2023) |
[32] | J.C. Wang, Y.J. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 61, 221 (2021) |
[33] | J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, L.C. Zhang, Mater. Sci. Eng. A 760, 214 (2019) |
[34] | S. Liu, J. Liu, L. Wang, R.L.W. Ma, Y. Zhong, W. Lu, L.C. Zhang, Scr. Mater. 181, 121 (2020) |
[35] | H.Z. Lu, L.H. Liu, C. Yang, X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li, J. Mater. Sci. Technol. 101, 205 (2022) |
[36] | S.F. Liu, S. Han, L. Zhang, L.Y. Chen, L.Q. Wang, L. Zhang, Y.J. Tang, J. Liu, H.P. Tang, L.C. Zhang, Compos. Part B 200, 108358 (2020) |
[37] | S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove, Mater. Sci. Technol. 32, 641 (2016) |
[38] | N. Resnina, I.A. Palani, S. Belyaev, S.S.M. Prabu, P. Liulchak, U. Karaseva, M. Manikandan, S. Jayachandran, V. Bryukhanova, A. Sahu, R. Bikbaev, J. Alloys Compd. 851, 156851 (2021) |
[39] | X. Fang, L. Zhang, J. Yang, H. Bai, L. Zhao, K. Huang, B. Lu, Appl. Therm. Eng. 162, 114302 (2019) |
[40] | Y.L. Guo, Q.F. Han, J.L. Hu, X.H. Yang, P.C. Mao, J.S. Wang, S.B. Sun, Z. He, J.P. Lu, C.M. Liu, Acta Metall. Sin. -Engl. Lett. 35, 475 (2022) |
[41] | S.Q. Liu, D. Wan, D. Peng, X. Lu, X.B. Ren, Y.Q. Fu, F. Wang, Y.J. Li, Z.L. Zhang, J.Y. He, Mater. Sci. Eng. A 860, 144288 (2022) |
[42] | F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang, J. Mater. Process. Technol. 212, 1377 (2012) |
[43] | Y.F. Zhou, G.K. Qin, L. Li, X. Lu, R. Jing, X.L. Xing, Q.X. Yang, Mater. Sci. Eng. A 772, 138654 (2020) |
[44] | P.P. Nikam, D. Arun, K.D. Ramkumar, N. Sivashanmugam, Mater. Charact. 172, 110892 (2021) |
[45] | C. Wang, T.G. Liu, P. Zhu, Y.H. Lu, T. Shoji, Mater. Sci. Eng. A 796, 140006 (2020) |
[46] | F. Ceritbinmez, A. Gunen, U. Gurol, G. Cam, J. Manuf. Process. 89, 150 (2023) |
[47] | Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang, S.S. Ao, Addit. Manuf. 32, 101051 (2020) |
[48] | J. Wang, Z. Pan, Y. Wang, L. Wang, L. Su, D. Cuiuri, Y. Zhao, H. Li, Addit. Manuf. 34, 101240 (2020) |
[49] | M. Zhang, X. Fang, Y. Wang, X. Jiang, T. Chang, N. Xi, K. Huang, Mater. Sci. Eng. A 840, 143001 (2022) |
[50] | L. Yu, K. Chen, Y. Zhang, J. Liu, L. Yang, Y. Shi, J. Alloys Compd. 892, 162193 (2022) |
[51] | Z. Pu, D. Du, K. Wang, G. Liu, D. Zhang, X. Wang, B. Chang, Mater. Sci. Eng. A 812, 141077 (2021) |
[52] | J. Wang, Z. Pan, G. Yang, J. Han, X. Chen, H. Li, Mater. Sci. Eng. A 749, 218 (2019) |
[53] | C. Zhang, L.W. Zhang, Z.Y. Liu, Acta Metall. Sin. -Engl. Lett. 29, 561 (2016) |
[54] | F. Yang, D.G. Zhu, M.L. Jiang, H. Liu, S.R. Guo, Q.Y. Wang, H. Wang, K. Zhang, A.J. Huang, J. Hou, Acta Metall. Sin. -Engl. Lett. 35, 1688 (2022) |
[55] | K. Sadrnezhaad, F. Mashhadi, R. Sharghi, Mater. Manuf. Process. 12, 107 (1997) |
[56] | S. Li, H. Hassanin, M.M. Attallah, N.J.E. Adkins, K. Essa, Acta Mater. 105, 75 (2016) |
[57] | Z. Yu, T. Yuan, M. Xu, H. Zhang, X. Jiang, S. Chen, J. Manuf. Process. 62, 430 (2021) |
[58] | B. Lu, X. Cui, X. Feng, M. Dong, Y. Li, Z. Cai, H. Wang, G. Jin,Vacuum 157, 65 (2018) |
[59] | N.S. Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin, M.J. Mills, H. Karaca, M. Elahinia, Sci. Rep. 9, 41 (2019) |
[60] | S. Dadbakhsh, B. Vrancken, J.P. Kruth, J. Luyten, J. Van Humbeeck, Mater. Sci. Eng. A 650, 225 (2016) |
[1] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[2] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[3] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[4] | Qiang Li, Xing-Ran Li, Bai-Xin Dong, Xiao-Long Zhang, Shi-Li Shu, Feng Qiu, Lai-Chang Zhang, Zhi-Hui Zhang. Metallurgy and Solidification Microstructure Control of Fusion-Based Additive Manufacturing Fabricated Metallic Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 29-53. |
[5] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[6] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[7] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[8] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[9] | Zhonghua Jiang, Pei Wang, Dianzhong Li. Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1523-1535. |
[10] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[11] | Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280. |
[12] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[13] | Zhenbo Zuo, Rui Hu, Xian Luo, Qingxiang Wang, Chenxi Li, Zhen Zhu, Jian Lan, Shujin Liang, Hongkui Tang, Kang Zhang. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1221-1234. |
[14] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
[15] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||