Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 840-854.DOI: 10.1007/s40195-024-01668-2
Previous Articles Next Articles
Dongqiqiong Wang1,2, Qiang Wang3(), Xiaowu Li1(
), Zhefeng Zhang1,2(
)
Received:
2023-09-01
Revised:
2023-11-17
Accepted:
2023-12-07
Online:
2024-05-10
Published:
2024-06-14
Contact:
Qiang Wang, wangqiang@lnu.edu.cn; Xiaowu Li, xwli@mail.neu.edu.cn; Zhefeng Zhang, zhfzhang@imr.ac.cn
Dongqiqiong Wang, Qiang Wang, Xiaowu Li, Zhefeng Zhang. Improving Fatigue Properties of 316L Stainless Steel Welded Joints by Surface Spinning Strengthening[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 840-854.
Add to citation manager EndNote|Ris|BibTeX
Welding mode | Single-sided multi-layer |
---|---|
Welding voltage | 22-25 V |
Welding current | 100-110 A |
Welding speed | 100 mm/min |
Shielding gas | 100% Ar |
Gas flux | 10 L/min |
Welding heat input | 760 J/mm |
Table 1 Main welding parameters of the tungsten inert gas (TIG) welding
Welding mode | Single-sided multi-layer |
---|---|
Welding voltage | 22-25 V |
Welding current | 100-110 A |
Welding speed | 100 mm/min |
Shielding gas | 100% Ar |
Gas flux | 10 L/min |
Welding heat input | 760 J/mm |
Material | Cr | Ni | Mo | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|
Base metal | 17.5 | 14 | 2.5 | 0.03 | 1.00 | 2.00 | 0.03 | 0.035 | Bal |
Filler metal | 18.73 | 12.5 | 2.36 | 0.02 | 0.38 | 1.85 | ≤ 0.03 | ≤ 0.04 | Bal |
Table 2 Chemical compositions of 316L stainless steel and ER316L stainless steel solder (wt.%)
Material | Cr | Ni | Mo | C | Si | Mn | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|
Base metal | 17.5 | 14 | 2.5 | 0.03 | 1.00 | 2.00 | 0.03 | 0.035 | Bal |
Filler metal | 18.73 | 12.5 | 2.36 | 0.02 | 0.38 | 1.85 | ≤ 0.03 | ≤ 0.04 | Bal |
Fig. 2 Microstructures of 316L stainless steel welded joint. a-a'' Evolution of the surface gradient microstructure in the BM: a' outermost layer in the BM, a' original microstructure in the BM; d-d'' the evolution of the surface gradient microstructure in the WZ: d' outermost layer in the WZ, d'' original microstructure in the WZ; b, e IPF and c, f KAM mappings from typical cross-sectional EBSD corresponding a, d
Fig. 3 TEM micromorphologies of welded joint. a1-a4 3S BM, b1-b4 3S WZ, a1, b1 top-surface layer 50-100 µm, a2, b2 subsurface layer 100-200 µm, a3, b3 subsurface layer 200-300 µm, a4, b4 matrix layer
Fig. 4 Microhardness distribution of the 316L stainless steel welded joint. a Surface microhardness distribution with distance from treated surface of the WZ and BM, b the microhardness distribution across the welded joint at 250 µm below the surface before and after 3S
Region | ||||
---|---|---|---|---|
Weld zone | 182 | 369 | 1080 | 2.364 |
Base metal | 175 | 398 | 871 | 3.175 |
Table 3 Main parameters of the surface microhardness curves
Region | ||||
---|---|---|---|---|
Weld zone | 182 | 369 | 1080 | 2.364 |
Base metal | 175 | 398 | 871 | 3.175 |
Fig. 5 Diagrammatic sketch of surface strengthening mechanism for 3S 316L stainless steel welded joint. a 3S BM, b 3S WZ. (AT: annealing twin, DT: deformation twin, CG: coarse grain)
Fig. 6 Tension-compression fatigue life distributions for the as-welded, smooth-welded and 3S-welded specimens of the 316L stainless steel welded joint. a S-N curves, b histogram of the fatigue strength comparison
Fig. 7 Fatigue fracture surface features of the as-welded specimens. a, a', a'' Specimen failed at the weld toe (WT), Δσ/2 = 220 MPa, Nf = 407,807; b, b', b'' specimen failed at the weld root (WR), Δσ/2 = 230 MPa, Nf = 230,399. a, b Full views of fracture surfaces; a', b' fatigue crack sources; a'', b'' later period of crack stable growth
Fig. 8 Fatigue fracture surface features of the smooth-welded specimens. a, a', a'' For #1, Δσ/2 = 250 MPa, Nf = 488,882; b, b', b'' for #2, Δσ/2 = 270 MPa, Nf = 69,700. a, b Full views of fracture surfaces; a', b' fatigue crack sources; a'' initial crack propagation stage of intergranular fracture for #1; b'' stable crack propagation stage of tearing columnar-grain for #2
Fig. 9 Fatigue fracture surface features of the 3S-welded specimens. a, a', a'' For #1, Δσ/2 = 260 MPa, Nf = 649,952; b, b', b'' for #2, Δσ/2 = 290 MPa, Nf = 60,486. a, b Full views of fracture surfaces; a', b' fatigue crack sources; a'', b'' surface morphologies near the fatigue sources corresponding a', b'
Fig. 10 Surface microstructure characteristics near the fatigue fractures. a Microcracks and long cracks of the smooth-welded specimen; c surface microstructure near the fatigue fracture of the 3S-welded specimen; typical fore-scatter detector (FSD) diagrams along with the phase mixing diagrams of b the smooth-welded specimen and d the 3S-welded specimen
[1] | Y.N. Dai, X.T. Zheng, P.S. Ding, Nucl. Eng. Technol. 53, 3474 (2021) |
[2] | K.L. Murty, I. Charit, J. Nucl. Mater. 383, 189 (2008) |
[3] | K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. R 65, 39 (2009) |
[4] | W. Liu, H.L. Fan, X.Z. Guo, Z.H. Huang, X.H. Han, J. Mater. Sci. Technol. 32, 561 (2016) |
[5] | G.V.P. Reddy, R. Sandhya, M. Valsan, K.B.S. Rao, Mater. Sci. Technol. 26, 1384 (2013) |
[6] | T. Shiozaki, N. Yamaguchi, Y. Tamai, J. Hiramoto, K. Ogawa, Int. J. Fatigue 116, 409 (2018) |
[7] | C.M. Branco, S.J. Maddox, V. Infante, E.C. Gomes, Int. J. Fatigue 21, 587 (1999) |
[8] | C.Y. Cui, X.G. Cui, X.D. Ren, T.T. Liu, J.D. Hu, Y.M. Wang, Mater. Des. 49, 761 (2013) |
[9] | S.C. Wu, Y.N. Hu, Z. Song, S.S. Ding, Y.N. Fu, Fatigue Fract. Eng. Mater. Struct. 42, 2232 (2019) |
[10] | D.Q.Q. Wang, D.D. Yao, Z.B. Gao, Q. Wang, Z.F. Zhang, X.W. Li, Int. J. Fatigue 151, 106363 (2021) |
[11] | D.Q.Q. Wang, D.D. Yao, Q. Wang, Z.B. Gao, Z.F. Zhang, X.W. Li, Int. J. Fatigue 167, 107362 (2022) |
[12] | D. Radaj, C.M. Sonsino, W. Fricke, Int. J. Fatigue 31, 2 (2009) |
[13] | D. Radaj, Int. J. Fatigue 18, 153 (1996) |
[14] | H. Šebestová, P. Horník, L. Mrňa, M. Jambor, V. Horník, P. Pokorný, P. Hutař, O. Ambrož, P. Doležal, Mater. Sci. Eng. A 772, 138780 (2020) |
[15] | J.D.M. Costa, J.A.M. Ferreira, L.P.M. Abreu, Procedia. Eng. 2, 697 (2010) |
[16] | H. Yeom, B. Choi, T. Seol, M. Lee, Y. Jeon, Metals 7, 103 (2017) |
[17] | Y. Madi, P. Matheron, N. Recho, P. Mongabure, Nucl. Eng. Des. 228, 161 (2004) |
[18] | T.S. Kumar, A. Nagesha, J.G. Kumar, P. Parameswaran, R. Sandhya, Metall. Mater. Trans. A 49, 1 (2018) |
[19] | T.S. Kumar, S.D. Yadav, A. Nagesha, R. Kannan, G.V.P. Reddy, Mater. Sci. Eng. A 772, 138627 (2020) |
[20] | V.D. Vijayanand, K. Laha, P. Parameswaran, V. Ganesan, M.D. Mathew, Mater. Sci. Eng. A 607, 138 (2014) |
[21] | J.G. Kumar, K. Laha, Mater. Sci. Eng. A 705, 72 (2017) |
[22] | T.S. Kumar, A. Nagesha, K. Mariappan, M.K. Dash, Int. J. Fatigue 149, 106269 (2021) |
[23] | S.A. David, J.M. Vitek, D.J. Alexander, J. Nondestruct. Eval. 15, 129 (1997) |
[24] | M. Valsan, D. Sundararaman, K.B.S. Rao, S.L. Mannan, Metall. Mater. Trans. A 26, 1207 (1995) |
[25] | R. Baptista, V. Infante, C.M. Branco, Int. J. Fatigue 30, 453 (2008) |
[26] | Z.Q. Fu, B.H. Ji, X.M. Kong, X. Chen, J. Constr. Steel Res. 129, 163 (2017) |
[27] | T. Dahle, Int. J. Fatigue 20, 677 (1998) |
[28] | A.L. Ramalho, J.A.M. Ferreira, C. A.G.M. Branco, Mater. Des. 32, 4705 (2011) |
[29] | T. Skriko, M. Ghafouri, T. Bjork, Int. J. Fatigue 94, 110 (2017) |
[30] | Y. Sakino, Y. Sano, R. Sumiya, Y.C. Kim, Sci. Technol. Weld. Join. 17, 402 (2012) |
[31] | J. Berg, N. Stranghoener, Int. J. Fatigue 82, 35 (2016) |
[32] | H. Yamamoto, Y. Danno, K. Ito, Y. Mikami, H. Fujii, Mater. Des. 160, 1019 (2018) |
[33] | C.W. Shao, P. Zhang, Y.K. Zhu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Acta Mater. 134, 128 (2017) |
[34] | C.W. Shao, Q. Wang, P. Zhang, Y.K. Zhu, Z.K. Zhao, X.G. Wang, Z.F. Zhang, Mater. Sci. Eng. A 740-741, 28 (2019) |
[35] | D.Q.Q. Wang, Q. Wang, Y.K. Zhu, P. Zhang, Z.J. Zhang, C.X. Ren, X.W. Li, Z.F. Zhang, Mater. Sci. Eng. A 732, 192 (2018) |
[36] | D.Q.Q. Wang, S.H. Wang, Q. Wang, J.P. Hou, X.W. Li, Z.F. Zhang, Fatigue Fract. Eng. Mater. Struct. 44, 2597 (2021) |
[37] | C.X. Ren, Q. Wang, Z.J. Zhang, H.J. Yang, Z.F. Zhang, Mater. Sci. Eng. A 754, 593 (2019) |
[38] | C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, Z.F. Zhang, T.G. Langdon, Acta Mater. 215, 117073 (2021) |
[39] | C.X. Ren, D.Q.Q. Wang, Q. Wang, Y.S. Guo, Z.J. Zhang, C.W. Shao, H.J. Yang, Z.F. Zhang, Int. J. Fatigue 124, 277 (2019) |
[40] | C.X. Ren, Q. Wang, Z.J. Zhang, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 704, 262 (2017) |
[41] | J. Munoz-Cubillos, J.J. Coronado, S.A. Rodriguez, Int. J. Fatigue 95, 120 (2017) |
[42] | Y. Totik, R. Sadeler, H. Altun, M. Gavgali, Mater. Des. 24, 25 (2003) |
[43] | Y.L. Zheng, Q.W. Hu, C.Y. Li, D.Z. Wang, L. Meng, J.G. Luo, J.P. Wang, X.Y. Zeng, Tribol. Int. 106, 46 (2017) |
[44] | C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, Z.F. Zhang, Mater. Charact. 177, 111179 (2021) |
[45] | C.X. Ren, Q. Wang, J.P. Hou, Z.J. Zhang, H.J. Yang, Z.F. Zhang, Mater. Sci. Eng. A 778, 139113 (2020) |
[46] | Y.C. Lin, P.Y. Chen, Mater. Sci. Eng. A 307, 165 (2001) |
[47] | S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Mater. 57, 1586 (2009) |
[48] | W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li, Philos. Mag. 88, 3011 (2008) |
[49] | W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, Z.F. Zhang, Phys. Rev. Lett. 101, 115505 (2008) |
[50] | H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, A. Vinogradov, Acta Mater. 59, 7060 (2011) |
[51] |
Y.B. Lei, Z.B. Wang, J.L. Xu, K. Lu, Acta Mater. 168, 133 (2019)
DOI |
[52] | H. Wang, H.Y. Jing, L. Zhao, Y.D. Han, X.Q. Lv, L.Y. Xu, Mater. Sci. Eng. A 690, 16 (2017) |
[53] | A. Mateo, A. Gironès, J. Keichel, L. Llanes, N. Akdut, M. Anglada, Mater. Sci. Eng. A 314, 176 (2001) |
[54] | X.H. Chen, J. Lu, L. Lu, K. Lu, Scr. Mater. 52, 1039 (2005) |
[55] | U. Zerbst, R.A. Ainsworth, H.T. Beier, H. Pisarski, Z.L. Zhang, K. Nikbin, T. Nitschke-Pagel, S. Muenstermann, P. Kucharczyk, D. Klingbeil, Eng. Fract. Mech. 132, 200 (2014) |
[56] | A. Hamada, M. Jaskari, T. Gundgire, A. Järvenpää, Mater. Sci. Eng. A 873, 145021 (2023) |
[57] | A.S. Hamada, L.P. Karjalainen, J. Puustinen, Mater. Sci. Eng. A 517, 68 (2009) |
[58] | A. Hamada, D. Porter, J. Puustinen, L.P. Karjalainen, Mater. Sci. Eng. A 762, 411 (2013) |
[1] | Fanchao Meng, Rui Zhang, Shuai Wang, Fengbo Sun, Run Chen, Lujun Huang, Lin Geng. Fatigue Crack Initiation and Propagation Dominated by Crystallographic Factors in TiB/near α-Ti Composite [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 763-776. |
[2] | Pengwei Jiang, Gang Wang, Yaosha Wu, Zhigang Zheng, Zhaoguo Qiu, Tongchun Kuang, Jibo Huang, Dechang Zeng. Microstructure Evolution, Tribological and Corrosion Properties of Amorphous Alloy Strengthening Stainless Steel Fabricated by Selective Laser Melting in NaCl Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 825-839. |
[3] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[4] | Zhilong Dong, Xue-Fang Xie, Jingwen Li, Yu Wan. Thickness-Dependent Microstructure and its Effect on Anisotropic Mechanical Properties of Duplex Stainless Steel 2205 Multi-pass Welded Joints [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1883-1892. |
[5] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. |
[6] | Wen-Ke Yang, Zhu-Man Song, Xue-Mei Luo, Guang-Ping Zhang. Evaluation of Tensile and Fatigue Properties of Metals Using Small Specimens [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 147-157. |
[7] | Jingyi Zou, Zhongwei Wang, Yanlong Ma, Liwen Tan. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Alkaline Solution: Effect of Tribo-Film [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1365-1375. |
[8] | Qi Wang, Chendong Shao, Haichao Cui, Yuan Gao, Fenggui Lu. Effect of Carbon Migration on Interface Fatigue Crack Growth Behavior in 9Cr/CrMoV Dissimilar Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 714-726. |
[9] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[10] | Liwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824. |
[11] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[12] | Chang-Zhen Zhang, Chen-Dong Shao, Hai-Chao Cui, Hua-Li Xu, Feng-Gui Lu. Characterization of Multi-layer Weld Metal and Creep-Rupture Behavior of Modified 10Cr-1Mo Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 808-820. |
[13] | Xia-Yu Wu, Jia-Kun Sun, Jia-Ming Wang, Yi-Ming Jiang, Jin Li. Crevice Corrosion Behaviors Between CFRP and Stainless Steel 316L for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1219-1226. |
[14] | Shu-Ming Wang, Jiang-Shan Li, Yan-Xin Wang, Xiao-Fang Zhang, Qing Ye. Thermal Shock Behavior Analysis of Tungsten-Armored Plasma-Facing Components for Future Fusion Reactor [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 515-522. |
[15] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||