Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (5): 714-726.DOI: 10.1007/s40195-021-01322-1
Previous Articles Next Articles
Qi Wang, Chendong Shao(), Haichao Cui, Yuan Gao, Fenggui Lu(
)
Received:
2021-06-10
Revised:
2021-07-16
Accepted:
2021-07-27
Online:
2022-05-10
Published:
2021-09-29
Contact:
Chendong Shao,Fenggui Lu
About author:
Fenggui Lu, Lfg119@sjtu.edu.cnQi Wang, Chendong Shao, Haichao Cui, Yuan Gao, Fenggui Lu. Effect of Carbon Migration on Interface Fatigue Crack Growth Behavior in 9Cr/CrMoV Dissimilar Welded Joint[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 714-726.
Add to citation manager EndNote|Ris|BibTeX
C | Si | Mn | Co | Mo | Ni | V | S | P | |
---|---|---|---|---|---|---|---|---|---|
CrMoV | 0.19-0.3 | 0.12 | 0.31-1.04 | - | 1.08 | 0.47-0.98 | 0.2-0.3 | 0.005 | 0.015 |
9Cr | 0.12-0.15 | ≤ 0.1 | 0.3-0.5 | 0.9 | 0.4-0.6 | 0.1-0.2 | 0.15-0.25 | ≤ 0.005 | ≤ 0.001 |
2CrMoV | 0.11 | 0.12 | 0.51 | - | 1.02 | 0.13 | 0.27 | 0.001 | 0.0032 |
Table 1 Chemical compositions of BMs and FM for welded joint (wt%)
C | Si | Mn | Co | Mo | Ni | V | S | P | |
---|---|---|---|---|---|---|---|---|---|
CrMoV | 0.19-0.3 | 0.12 | 0.31-1.04 | - | 1.08 | 0.47-0.98 | 0.2-0.3 | 0.005 | 0.015 |
9Cr | 0.12-0.15 | ≤ 0.1 | 0.3-0.5 | 0.9 | 0.4-0.6 | 0.1-0.2 | 0.15-0.25 | ≤ 0.005 | ≤ 0.001 |
2CrMoV | 0.11 | 0.12 | 0.51 | - | 1.02 | 0.13 | 0.27 | 0.001 | 0.0032 |
Fig. 1 Welded joint schematic and CT specimen: a method of removing the CT specimen from the welded joint, b the shape and dimensions of CT specimens used in FCG tests
Fig. 3 Morphologies of dissimilar welded joint: a the overall microstructure of the joint, b columnar grain in WM; c morphology of WM center; d equiaxed grains in WM
Fig. 6 Results of line scanning of CEZ and CDZ: a carbon concentration of the CEZ and CDZ; b magnified morphology of precipitated phase in CEZ; c magnified morphology of precipitated phase in CDZ
Fig. 8 FCG path of 9Cr-HAZ at R?=?0.1: a fine grain zone of the crack left side at the early stage of propagation, b coarse grain zone of the crack right side at the early stage of propagation, c macroscopic morphology of crack deflection position, d-f crack propagation in each micro-region
Fig. 9 Micro-morphologies of fracture surface in different positions of 9Cr-HAZ: a macroscopic morphology; b and c morphologies of crack position in 9Cr-HAZ; d fracture morphology of CDZ; e morphology of crack deflection position; f and g dimples in CDZ
Fig. 10 Fracture morphologies of 9Cr-HAZ crack deflection position: b and c secondary cracks before crack deflection; a and d morphologies of deflection position
Fig. 11 EBSD analysis of crack deflection path in 9Cr-HAZ: a macroscopic morphology of crack path; b-e IPF images of each micro-region; f-i schematics of deformation in each micro-region
[1] |
J.J. Wu, H.J. Hou, Y.P. Yang, E. Hu, Appl. Energy 157, 123 (2015)
DOI URL |
[2] |
A. Rusin, G. Nowak, W. Piecha, Eng. Failure Anal. 34, 217 (2013)
DOI URL |
[3] | S. Guan, C.Y. Cui, Acta Metall. Sin. Engl. Lett. 28, 1083 (2015) |
[4] |
A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57, 5093 (2009)
DOI URL |
[5] |
O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics 32, 362 (2013)
DOI URL |
[6] | X.P. Mao, H. Xu, G. Wang, Z.Y. Ma, Adv. Mater. Res. 33-37, 521 (2008) |
[7] |
W. Kosman, M. Roskosz, K. Nawrat, Appl. Therm. Eng. 29, 3386 (2009)
DOI URL |
[8] |
Y.Y. You, R.K. Shiue, R.H. Shiue, C. Chen, J. Mater. Sci. Lett. 20, 1429 (2001)
DOI URL |
[9] |
T. Helander, J. Agren, J.O. Nilsson, ISIJ Int. 37, 1139 (1997)
DOI URL |
[10] |
R.S. Vidyarthy, A. Kulkarni, D.K. Dwivedi, Mater. Sci. Eng. A 695, 249 (2017)
DOI URL |
[11] |
S.G. Nayee, V.J. Badheka, J. Manuf. Process. 16, 137 (2014)
DOI URL |
[12] |
R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja, M. Vijayalakshmi, J. Mater. Sci. 44, 257 (2009)
DOI URL |
[13] |
S. Wang, Q. Ma, Y. Li, Mater. Des. 32, 831 (2011)
DOI URL |
[14] |
Y. Li, K. Li, Z. Cai, J. Pan, X. Liu, P. Wang, Weld. World 62, 1137 (2018)
DOI URL |
[15] |
A. Kulkarni, D.K. Dwivedi, M. Vasudevan, Mater. Sci. Eng. A 731, 309 (2018)
DOI URL |
[16] |
K. Laha, S. Latha, K.B. Sankara Rao, S.L. Mannan, D.H. Sastry, Mater Sci. Technol. 17, 1265 (2013)
DOI URL |
[17] |
K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, D.H. Sastry, Metall. Mater. Trans. A 32, 115 (2001)
DOI URL |
[18] |
M.L. Huang, L. Wang, Metall. Mater. Trans. A 29, 3037 (1998)
DOI URL |
[19] |
M.L. Zhu, F.Z. Xuan, S.T. Tu, Int. J. Pressure Vessels Piping 110, 9 (2013)
DOI URL |
[20] |
Y.C. Su, X.M. Hua, Y.X. Wu, J. Mater. Process. Technol. 214, 750 (2014)
DOI URL |
[21] |
Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, Y.L. Gao, Mater. Lett. 141, 242 (2015)
DOI URL |
[22] |
P. Mayr, C. Schlacher, J.A. Siefert, J.D. Parker, Int. Mater. Rev. 64, 1 (2018)
DOI URL |
[23] |
R. Paventhan, P.R. Lakshminarayanan, V. Balasubramanian, Mater. Des. 32, 1888 (2011)
DOI URL |
[24] |
N. Arivazhagan, S. Singh, S. Prakash, G.M. Reddy, Int. J. Adv. Manuf. Technol. 39, 679 (2007)
DOI URL |
[25] |
L. Milović, T. Vuherer, M. Zrilić, A. Sedmak, S. Putić, Mater. Manuf. Processes 23, 597 (2008)
DOI URL |
[26] | C.D. Lundin, K.K. Khan, D. Yang, Weld. Res. Counc. Bull. 407, 1 (1995) |
[27] |
X. Liu, Z.P. Cai, X.L. Deng, F.G. Lu, J. Mater. Res. 32, 3117 (2017)
DOI URL |
[28] |
V. Chaswal, G. Sasikala, S.K. Ray, S.L. Mannan, B. Raj, Mater. Sci. Eng. A 395, 251 (2005)
DOI URL |
[29] |
S. Kwofie, Int. J. Fatigue 26, 299 (2004)
DOI URL |
[30] |
M.L. Zhu, F.Z. Xuan, Mater. Sci. Eng. A 527, 4035 (2010)
DOI URL |
[31] | S. Mannan, K. Laha, Trans. Indian Inst. Met. 49, 303 (1996) |
[32] |
K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, Y.L. Gao, J. Iron Steel Res. Int. 25, 847 (2018)
DOI URL |
[33] |
K. Ding, X.H. Li, B.G. Zhao, P. Wang, Y.M. Ding, F.G. Lu, Y.L. Gao, J. Mater. Res. Technol. 9, 6048 (2020)
DOI URL |
[34] | J.G. Chen, Y.C. Liu, Y.T. Xiao, Y.H. Liu, C.X. Liu, H.J. Li, Acta Metall. Sin. Engl. Lett. 31, 706 (2018) |
[1] | Yan Liu, Jun Zhang, Shu-Jun Li, Wen-Tao Hou, Hao Wang, Qin-Si Xu, Yu-Lin Hao, Rui Yang. Effect of HIP Treatment on Fatigue Crack Growth Behavior of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1163-1168. |
[2] | Amir SULTAN, Riffat Asim PASHA,Mifrah ALI, Muhammad Zubair KHAN, Muhammad Afzal KHAN, Naeem Ullah DAR,Masood SHAH. Numerical Simulation and Experimental Veri?cation of CMOD in SENT Specimen: Application on FCGR of Welded Tool Steel [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 92-96. |
[3] | Liangbi LI,Zhengquan WAN,Zili WANG,Chunyan JI. Residual stress relaxation in typical weld joints and its effect on fatigue and crack growth [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(3): 202-210. |
[4] | X.B.Liu, L.Z.Ma, K.M.Chang, E.Barbero. FATIGUE CRACK PROPAGATION OF Ni-BASE SUPERALLOYS [J]. Acta Metallurgica Sinica (English Letters), 2005, 18(1): 55-64 . |
[5] | H.Q.Zhang. ON FATIGUE CRACK PATH DEVIATION AT ELEVATED TEMPERATURE IN ELECTRON BEAM REPAIRED WELDMENTS OF TURBINE DISK [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 584-590 . |
[6] | H.C.Yang. INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 597-600 . |
[7] | J.M.Gong. EFFECT OF CARBON MIGRATION ON CREEP PROPERTIES OF Cr5Mo DISSIMILAR WELDED JOINTS WITH Ni-BASED AND AUSTENITIC WELD METAL [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 560-568 . |
[8] | S.S. Xie; X.F. Pan; T.L. Wang; Z.X. Wang; H.C. Yang and Q. Wang ( School of Materials and Metallurgy, Northeastern Universityl Shenyang 110006, China)( School of Materials and Metallurgy, Northeastern Universityl Shenyang 110006, China)( School of Materials and Metallurgy, Northeastern Universityl Shenyang 110006, China)( School of Materials and Metallurgy, Northeastern Universityl Shenyang 110006, China)( Institute of Metal Research, The Chinese Academy of Science, Shenyang 110015, China)( Liaoning Machinery Industry Foreign Trade Co. Ltd., Shenyang 110002, China). EFFECTS OF MICROSTRVCTURE ON FATIGUE CRACK GROWTH BEHMIOR IN Ni-BASE SUPERALLOY GH586 [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(3): 267-272. |
[9] | Author H.F. Huang and S.L. Liu Laboratory of Material Mechanical Properties, Beijing Institute of Aeronautical Materials (BIAM), Beijing 100095, China Manuscript received 18 October 1998. CRACK GROWTH BEHAVIOR IN TITANIUM ALLOY TC11AT ROOM AND HIGH TEMPERATURES [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 80-84. |
[10] | ZHENG Yesha WANG Zhongguang AI Suhua State Key Laboratory of Fatigue and Fracture for Materials,Institute of Metal Research,Academia Sinica,Shenyang,China postdoctor,Shanghai Institute of Ceramics,Academia Sinica,Shanghai 200050,China. ROUGHNESS-INDUCED SHEAR RESISTANCE OF MODE Ⅱ CRACK GROWTH [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(6): 397-404. |
[11] | ZHENG Yesha WANG Zhongguang AI Suhua State Key Laboratory of Fatigue and Fracture for Materials,Institute of Metal Research,Academia Sinica,Shenyang,110015,China. MICROFRACTOGRAPHY OF NEAR-THRESHOLD FATIGUE CRACK PROPAGATION IN DUAL-PHASE STEELS [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(5): 385-389. |
[12] | GAO Hua CHEN Youxuan LI Ming Shanghai University of Engineering Science,Shanghai,ChinaCHEN Dehai Shanghai Dalong Machinery,Shanghai,China Associate Professor,Dept.of Materials,Shanghai University of Engineering Science,Shanghai 200051,China. EFFECT OF NON-PROPORTIONAL OVERLOADING ON FATIGUE CRACK GROWTH [J]. Acta Metallurgica Sinica (English Letters), 1991, 4(1): 59-64. |
[13] | JING Xiaotian LOU Bingzhe GU Chenqing SHEN Fusan Shanxi Institute of Mechanical Engineering,Xi'an,China Dept.of Materials,Shanxi Institute of Mechanical Engineering,Xi'an 710048,China. TRANSFORMATION OF RETAINED AUSTENITE IN CARBURIZED CASE DURING FATIGUE CRACK GROWTH [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(4): 268-275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||