Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (6): 808-820.DOI: 10.1007/s40195-020-01012-4
Previous Articles Next Articles
Chang-Zhen Zhang1, Chen-Dong Shao1, Hai-Chao Cui1, Hua-Li Xu1, Feng-Gui Lu1()
Received:
2019-09-16
Revised:
2019-11-25
Online:
2020-06-10
Published:
2020-06-17
Contact:
Feng-Gui Lu
Chang-Zhen Zhang, Chen-Dong Shao, Hai-Chao Cui, Hua-Li Xu, Feng-Gui Lu. Characterization of Multi-layer Weld Metal and Creep-Rupture Behavior of Modified 10Cr-1Mo Welded Joint[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 808-820.
Add to citation manager EndNote|Ris|BibTeX
Elements | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
BM | 0.1 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | 0.06 | Bal. |
Filler | 0.11 | 0.25 | 0.55 | 8.87 | 0.97 | - | 0.46 | 0.2 | 0.06 | 0.05 | Bal. |
Table 1 Main chemical compositions of BM and filler material (wt%)
Elements | C | Si | Mn | Cr | Mo | W | Ni | V | Nb | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
BM | 0.1 | 0.1 | 0.45 | 10.4 | 1.06 | 0.81 | 0.74 | 0.2 | 0.08 | 0.06 | Bal. |
Filler | 0.11 | 0.25 | 0.55 | 8.87 | 0.97 | - | 0.46 | 0.2 | 0.06 | 0.05 | Bal. |
Fig.2 OM images of the microstructure of the investigated WM before the creep test. a Macrostructure of the WM adjacent to the fusion line, b the microstructure of adjacent two layers of weld bead adjacent to fusion line, c the microstructure of adjacent two layers of weld bead adjacent to the center
Fig. 3 Inverse pole figure (IPF) color images and relative frequency of misorientation angles of the investigated WM before creep. a Macrostructure of the WM, b the microstructure of the FGZ in WM, c the size of grains in FGZ, d the relative frequency of misorientation angles in figure a
Fig. 5 Macrostructure of the ruptured specimen at 620 °C under the stress of 150 MPa. a Optical image of ruptured specimen, b the overall macrostructure of the ruptured specimen, c the overall fracture morphology of the ruptured specimen
Fig. 6 SEM images of the creep fracture morphology at 620 °C under the stress of 150 MPa. a The “wave” structure fracture morphology, b the microstructure of lamellar structure, c the microstructure of honeycomb-like structure
Fig. 7 SEM images of precipitate phases of FGZ in WM adjacent to fusion line away from the fracture. a Before the creep test, b after the creep test, c the BSE image of figure b, d the EDS result of Cr-rich phase before the creep test, e the EDS result of Mo-rich phase after the creep test, f the EDS result of Cr-rich phase after the creep test
Fig. 8 Microstructure of the micro-crack in FGZ in WM adjacent to the fusion line in the creep-ruptured specimen. a OM image of micro-crack in FGZ in WM, b the IPF of micro-crack in FGZ in WM, c the SEM image of micro-cavities, d the BSE image of figure c
Elements | Mo | Cr | Fe | C | Si | W |
---|---|---|---|---|---|---|
Point A | 4.3 | 43.2 | 23.6 | 24.5 | - | - |
Point B | 7.9 | 50.6 | 19.6 | 19.6 | - | - |
Point C | 33.9 | 8.9 | 44.6 | - | 4.5 | 6.8 |
Table 2 EDS analysis results of precipitates shown in Fig. 10 (wt%)
Elements | Mo | Cr | Fe | C | Si | W |
---|---|---|---|---|---|---|
Point A | 4.3 | 43.2 | 23.6 | 24.5 | - | - |
Point B | 7.9 | 50.6 | 19.6 | 19.6 | - | - |
Point C | 33.9 | 8.9 | 44.6 | - | 4.5 | 6.8 |
Fig. 11 Microstructures of different zones in the welded joint after the creep test: a all zones location in welded joint, b BM, c OTZ, d FGHAZ, e CGHAZ, f WM adjacent to fusion line (WMF), g WM in the center
Zones | Cr | Fe | Si | Mo | W |
---|---|---|---|---|---|
WMF | 8.5 | 49.7 | 3.3 | 30.37 | 2.65 |
CGHAZ | 8.09 | 53.27 | 2.79 | 29.15 | 2.63 |
FGHAZ | 8.4 | 48.17 | 1.27 | 15.34 | 21.63 |
OTZ | 12.49 | 48.48 | 0.8 | 12.97 | 20.12 |
BM | 10.96 | 39.9 | 0.71 | 18.32 | 23.46 |
Table 3 Main chemical compositions of the Laves phase in different zones after the creep test (wt%)
Zones | Cr | Fe | Si | Mo | W |
---|---|---|---|---|---|
WMF | 8.5 | 49.7 | 3.3 | 30.37 | 2.65 |
CGHAZ | 8.09 | 53.27 | 2.79 | 29.15 | 2.63 |
FGHAZ | 8.4 | 48.17 | 1.27 | 15.34 | 21.63 |
OTZ | 12.49 | 48.48 | 0.8 | 12.97 | 20.12 |
BM | 10.96 | 39.9 | 0.71 | 18.32 | 23.46 |
Fig. 15 Schematic of the creep-rupture process of the 10Cr-1Mo multi-layer welded joint at 620 °C under 150 MPa. a, d Micro-cavities nucleating around Laves phases on the grain boundaries, b, e the micro-cavities growing up, c, f the micro-crack forming in FGZ in WM adjacent to fusion line
[1] | R. Mishnev, N. Dudova, R. Kaibyshev, Mater. Sci. Eng A 713, 161 (2018) |
[2] | S.S. Wang, D.L. Peng, L. Chang, X.D. Hui, Mater. Des. 50, 174 (2013) |
[3] | A. Kipelova, R. Kaibyshev, A. Belyakov, D. Molodov, Mater. Sci. Eng A 528, 1280 (2011) |
[4] | X.L. Zhou, Y.Z. Shen, Z.Q. Xu, Acta Metall. Sin. (Engl. Lett.) 28, 48 (2015) |
[5] | H. Wang, W. Yan, S. van Zwaag, Q. Shi, W. Wang, K. Yang, W. Yan, Y. Shan. Acta Mater. 134, 143 (2017) |
[6] | B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Y. Zhang, Mater. Sci. Eng. A-Struct. 711, 434 (2018) |
[7] | S. Ravi, J. Vanaja, V.D. Vijayanand, P. Rajasundaram, S. Vijayaraghavan, M. Shanmugavel, B. Babu, K. Laha, Mater. Sci. Eng A 702, 232 (2017) |
[8] | Q. Zhang, J. Zhang, P. Zhao, Y. Huang, Y. Yang, Y. Zhao, Mater. Sci. Eng A 638, 30 (2015) |
[9] | S.D. Yadav, S. Kalácska, M. Dománková, D.C. Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch, C. Poletti, Mater. Charact. 115, 23 (2016) |
[10] | C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, A. Srivastava, Mater. Sci. Eng A 695, 291 (2017) |
[11] | A. Fedoseeva, N. Dudova, R. Kaibyshev, Mater. Sci. 52, 2974 (2017) |
[12] | A. Kipelova, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng A 532, 71 (2012) |
[13] | Y. Wang, L. Li, R. Kannan, Mater. Sci. Eng A 714, 1 (2018) |
[14] | X. Yu, S.S. Babu, H. Terasaki, Y. Komizo, Y. Yamamoto, M.L. Santella, Acta Mater. 61, 2194 ( 2013) |
[15] | L. Hu, X. Wang, X. Yin, H. Liu, Q. Ma, Acta Metall. Sin. Engl. Lett. 54, 1767 (2018) |
[16] | N. Zhao, A. Roy, W. Wang, L. Zhao, V.V. Silberschmidt, Mech. Mater. 130, 29 (2019) |
[17] | L. Zhao, H. Jing, L. Xu, J. An, G. Xiao, D. Xu, Y. Chen, Y. Han. J. Mater. Res. 26, 934 (2011) |
[18] | I. Fedorova, A. Kipelova, A. Belyakov, R. Kaibyshev, Metall. Mater. Trans A 44, 128 (2013) |
[19] | W. Xue, Q.-G. Pan, Y.-Y. Ren, W. Shang, H.-Q. Zeng, H. Liu, Mater. Sci. Eng A 552, 493 (2012) |
[20] | Y. Wei, S. Qiao, F. Lu, W. Liu, Mater. Des. 97, 268 (2016) |
[21] | W. Liu, F. Lu, Y. Wei, Y. Ding, P. Wang, X. Tang, Mater. Des. 108, 195 (2016) |
[22] | T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, S.P. Selvi, V. Maduraimuthu, M.D. Mathew, Metall. Mater. Trans A 591, 111 (2014) |
[23] | F.C. Ren, H. Wang, X.Y. Tang, F. Chen, J. Iron. Steel Res. Int. 25, 1303 (2018) |
[24] | S. Zhu, M. Yang, X.L. Song, S. Tang, Z.D. Xiang, Mater. Charact. 98, 60 (2014) |
[25] | X. Wang, X. Wang, B. Luo, J. Guo, Eng. Fract. Mech. 202, 394 (2018) |
[26] | G. Eggeler, Acta Mater. 37, 3225 (1989) |
[27] | A. Aghajani, C. Somsen, G. Eggeler, Acta Mater. 57, 5093 (2009) |
[28] | A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, Scr. Mater. 61, 1068 (2009) |
[29] | M.I. Isik, A. Kostka, G. Eggeler, Acta Mater. 81, 230 (2014) |
[30] | M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Acta Mater. 90, 94 (2015) |
[31] | S. Qiao, Y. Wei, H. Xu, H. Cui, F. Lu, Mater. Charact. 151, 318 (2019) |
[32] | M.P. Sello, W.E. Stumpf, Mater. Sci. Eng A 528, 1840 (2011) |
[1] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[2] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. |
[3] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
[4] | Dong Wang, Changshu He, Hao Wang, Xiang Zhao, Liang Zuo. Effects of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Al-12.7Si-0.7Mg Alloy Welded Joints by GMAW [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 245-252. |
[5] | Liang ZHANG, Xuesong LIU, Linsen WANG, Ping WANG,Hongyuan FANG. Fatigue crack initiation for Al-Zn-Mg alloy welded joint [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(3): 235-240. |
[6] | Jun ZHU, Jun LUO, Qingmeng ZHANG, Jun DU. Effect of Au film pre-deposited at different durations as inner electrode on the electrical properties and interface microstructures of Na2O-PbO-Nb2O5-SiO2 multi-layer glass-ceramic capacitors [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 449-456. |
[7] | Yukio TAKAHASHI,Masaaki TABUCHI. Creep and creep-fatigue behavior of high chromium steel weldment [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 175-182. |
[8] | Masaaki TABUCHI, Hiromichi HONGO. Evaluation of microstructure and creep damage in high-Cr ferritic steel welds [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(3): 225-234. |
[9] | Z.J. Xu, Y.L. Li. A NOVEL METHOD FOR EVALUATING PLANE STRESS DYNAMIC FRACTURE TOUGHNESS OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINTS [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(4): 303-312 . |
[10] | F.Q.Tian. STUDY ON DYNAMIC J-INTEGRAL OF MECHANICAL HETEROGENEOUS WELDED JOINT [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(6): 934-939 . |
[11] | H.Hongo. EVALUATION OF CREEP PROPERTIES FOR 316FR STEEL THICK PLATE WELDMENT USING MINIATURE CREEP SPECIMEN [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 369-374 . |
[12] | J.M.Gong. EFFECT OF CARBON MIGRATION ON CREEP PROPERTIES OF Cr5Mo DISSIMILAR WELDED JOINTS WITH Ni-BASED AND AUSTENITIC WELD METAL [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(4): 560-568 . |
[13] | X. Y. Li; X. T. Tian and H. C. Zhu( 1)Weldng Division, Beijing Polytechnic University, Beijing 100022, China 2)National ho. of Advanced Welding Technology, HIT, Harbin 150001, China). FATIGUE CRACK GSOWTH AND CRACK CLOSURE OF SIMULATED OVER-MATCHED WELDED JOINTS [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 117-122. |
[14] | M. Sakane (Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1Nojihigashi Kusatsu-shi Shiga, 525-8577, Japan)S. Mukai (Power Reactor and Nuclear Fuel Development Corporation, 4002 Narita-cho Oarai-cho Ibaragibun Ibaragi,311-13, Japan). A CHALLENGE FOR BIAXIAL AND TRIAXIAL CREEP TESTING [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(6): 429-436. |
[15] | NI Yushan CHENG Guangxu KUANG Zhenbang Xi'an Jiaotong University,China doctorate student,Institute of Engineering Mechanics,Xi'an Jiaotong University,Xi'an 710049,China. FRACTAL ANALYSIS OF FRACTURE SURFACE OF WELDED JOINT UNDER LOW CYCLE FATIGUE [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(3): 172-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||