Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (8): 1261-1280.DOI: 10.1007/s40195-023-01544-5
Previous Articles Next Articles
Solomon Kerealme Yeshanew1,2, Chunguang Bai1(), Qing Jia1, Tong Xi1, Zhiqiang Zhang1, Diaofeng Li1, Zhizhou Xia1,2, Rui Yang1, Ke Yang1(
)
Received:
2022-10-09
Revised:
2023-01-08
Accepted:
2023-01-10
Online:
2023-08-10
Published:
2023-03-22
Contact:
Chunguang Bai cgbai@imr.ac.cn.Ke Yang kyang@imr.ac.cn
Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280.
Add to citation manager EndNote|Ris|BibTeX
Al | V | Cu | Fe | C | N | O | H | Ti |
---|---|---|---|---|---|---|---|---|
6.13 | 4.18 | 5.65 | 0.17 | 0.011 | 0.007 | 0.10 | 0.002 | Bal. |
Table 1 Chemical composition of the as received Ti6Al4V- 5Cu alloy (wt%)
Al | V | Cu | Fe | C | N | O | H | Ti |
---|---|---|---|---|---|---|---|---|
6.13 | 4.18 | 5.65 | 0.17 | 0.011 | 0.007 | 0.10 | 0.002 | Bal. |
Fig. 3 a X-ray diffraction patterns of the Ti6Al4V-5Cu alloy after hot rolling, b magnified image of selected diffraction areas of a. The legend expressed the initial alloy for study (OI) and various thickness reduction ratios of 15%, 58%, and 73%
Fig. 4 a DSC curve of as cast Ti6Al4V-5Cu alloy, b OM observation of the heat-treated sample at 920 °C for 1 h, and exposed to slower air-cooling rate (AC), c SEM metallographic revealing the formation of kinked α lamellar structures and presence of β phase at 790 °C
Fig. 5 OM images demonstrating the effect of hot rolling deformation on microstructure evolution of the Ti6Al4V-5Cu alloy at TRR’s of: a 15%, b 58%, c 73%. EBSD images showing the grain structure in the alloy deformed at TRR’s of: d 15%, e 58%, f 73%
No | Thickness reduction, TR (%) | Grain size (µm) | Phase volume fraction (%) | |||
---|---|---|---|---|---|---|
Min | Max | Average | α phase | β phase | ||
1 | 15 | 1.43 | 9.33 | 2.04 ± 1.46 | 90.8 | 9.2 |
2 | 58 | 1.43 | 12.3 | 1.88 ± 0.78 | 58.6 | 23.5 |
3 | 73 | 1.43 | 53.01 | 2.51 ± 2.1 | 98.3 | 1.7 |
Table 2 Average grain size of the microstructure and the average phase volume of the α and β of the hot rolled Ti6Al4V-5Cu alloy at various TRR’s
No | Thickness reduction, TR (%) | Grain size (µm) | Phase volume fraction (%) | |||
---|---|---|---|---|---|---|
Min | Max | Average | α phase | β phase | ||
1 | 15 | 1.43 | 9.33 | 2.04 ± 1.46 | 90.8 | 9.2 |
2 | 58 | 1.43 | 12.3 | 1.88 ± 0.78 | 58.6 | 23.5 |
3 | 73 | 1.43 | 53.01 | 2.51 ± 2.1 | 98.3 | 1.7 |
Fig. 7 Relationship plot showing the influence of grain rotation on the texture fiber separation angle to maintain the BOR of {0001}α//{110}β on the 15% hot-rolled Ti6Al4V-5Cu alloy
Fig. 9 Relationship plot showing the influence of grain rotation on the α/β fiber texture interface separation angle between {0001}α and {110}β of the 58% hot rolled Ti6Al4V-5Cu alloy
Fig. 11 Relationship plot showing the influence of grain rotation on the α/β fiber texture separation angle between {0001}α and {110}β of the 73% hot rolled Ti6Al4V-5Cu alloy
Fig. 12 a High resolution TEM investigation showing that an activated prismatic and pyramidal slip planes along the [$\overline{2 }$ 4 $\overline{2 }$ 3], and Ti2Cu intermetallic compound, b basal, prismatic, and pyramidal slip plane in the [2 $\overline{1 }\overline{1 }$ 0] and [1 $\overline{2 }$ 1 $\overline{3 }$] slip directions observed on the 15% deformed sample
Fig. 13 a SADP using TEM at lower magnification, b the higher magnification of the portion, Pt.1, revealed that the Ti6Al4V-5Cu alloy after 58% thickness reduction was made up of α pyramidal plane along [01 $\overline{1 }$ 1] and, β of [$\overline{2 }$ 33] and [$\overline{1 }$ 23] slip directions c
Fig. 14 Selected high bright diffraction pattern using TEM investigation revealed that the Ti6Al4V-5Cu alloy after a 73% thickness reduction was made up of various activated slip planes
Fig. 15 Selected high bright fields of diffraction obtained using TEM investigation revealed that the 73% deformed Ti6Al4V-5Cu alloy was composed of slip planes of: α (hcp) pyramidal along the [$1\overline{2 }$ 1 $\overline{3 }$], [01 $\overline{1 }$ 2], and β of [$\overline{1 }$ 11], [$\overline{2 }$ 33], [01 $\overline{3 }$], and [113]
Fig. 16 Grain boundary misorientation angle distributions in the Ti6Al4V-5Cu alloy deformed at various thickness reduction ratios of: a 15%, b 58%, c 73%. The peaks at 65$^\circ$ and 85$^\circ$ correspond to {11 $\overline{2 }$ 2} < 11 $\overline{2 }\overline{3 }$> compressive twins and {10 $\overline{1 }$ 2} < 10 $\overline{1 }\overline{1 }$> tensile twins, respectively
No | TR (%) | Grain size (µm) | Phase volume (%) | Yield strength,YS (MPa) | Ultimate tensile strength, UTS (MPa) | Tensile elongation, El (%) | Vickers hardness (kgf/mm2) | |||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | α phase | β phase | ||||||
1 | 15 | 1.43 | 9.33 | 2.04 ± 1.46 | 90.8 | 9.2 | 1106 | 1267 | 13.01 | 405.4 |
2 | 58 | 1.43 | 12.3 | 1.88 ± 0.78 | 58.6 | 23.5 | 937.33 | 1188.67 | 23.15 | 418.8 |
3 | 73 | 1.43 | 53.01 | 2.51 ± 2.1 | 98.3 | 1.7 | 831.33 | 1221 | 19.73 | 397.8 |
Table 3 Mean grain size, α/β phase fraction and tensile property of the Ti6Al4V-5Cu alloy under different TRR’s
No | TR (%) | Grain size (µm) | Phase volume (%) | Yield strength,YS (MPa) | Ultimate tensile strength, UTS (MPa) | Tensile elongation, El (%) | Vickers hardness (kgf/mm2) | |||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | α phase | β phase | ||||||
1 | 15 | 1.43 | 9.33 | 2.04 ± 1.46 | 90.8 | 9.2 | 1106 | 1267 | 13.01 | 405.4 |
2 | 58 | 1.43 | 12.3 | 1.88 ± 0.78 | 58.6 | 23.5 | 937.33 | 1188.67 | 23.15 | 418.8 |
3 | 73 | 1.43 | 53.01 | 2.51 ± 2.1 | 98.3 | 1.7 | 831.33 | 1221 | 19.73 | 397.8 |
[1] |
J. Liu, H. Wang, F. Li, M. Li, K. Yang, E. Zhang, Biomed. Mater. 9, 025013 (2014)
DOI URL |
[2] | E. Zhang, M. Chen, A. Hou, Mater. Sci. Eng. C 69, 1221 (2016) |
[3] | M. Geetha, R. Asokamani, K. Gogia, Prog. Mater. Sci. 54, 425 (2009) |
[4] |
C. Tao, L. Yuan, J.M. Luo, F. Zheng, J. Alloys Compd. 812, 152142 (2020)
DOI URL |
[5] |
S. Bruschi, F. Quadrini, M.E. Tata, Mater. Lett. 58, 3622 (2004)
DOI URL |
[6] |
P. Gao, M. Zhan, Z. Lei, Y. Li, J. Mater. Sci. Technol. 39, 56 (2020)
DOI URL |
[7] | K. Park, S. Na, J. Mater. Proc. Technol. 130-131, 540 (2002) |
[8] | Y. Saito, H. Utsunomiy, T. Sakai, G. Hong, Scr. Mater. 9, 1221 (1998) |
[9] |
V. Stolyarov, B. Mingler, M. Zehetbauer, Mater. Sci. Eng. A 476, 98 (2008)
DOI URL |
[10] |
S. Dyakonov, S. Mironov, N. Enikeev, P. Semenova, Z. Valiev, L. Semiatin, Mater. Sci. Eng. A 742, 89 (2019)
DOI URL |
[11] | H. Wang, W. Song, M. Liu, S. Zhang, L. Ren, D. Qiu, Q. Chen, K. Yang, Nat. Commun. 13, 2034 (2022) |
[12] |
A. Pineau, T. Pardoen, Acta Mater. 107, 508 (2016)
DOI URL |
[13] | R. Z. Valiev, T. G. Langdon, Achieving Exceptional Grain Refinement through Severe Plastic Deformation: New Approaches for Improving the Processing Technology. Metall. Mater. Trans. A 42, 2942 (2011). https://doi.org/10.1007/s11661-010-0556-0 |
[14] | H. Wang, K. Koenigsmann, S. Zhang, L. Ren, K. Yang, Mater. Des. 88, 108475 (2020) |
[15] |
Z. Ma, L. Ren, M. Li, Y. Zhang, W. Liu, Z. Liao, K. Yang, J. Mater. Sci. Technol. 30, 699 (2014)
DOI URL |
[16] |
F. Heidenau, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer, J. Mater. Sci. 16, 883 (2005)
DOI URL |
[17] |
D. Xu, T. Wang, Z. Lu, Y. Wang, B. Sun, S. Wang, Q. Fu, Z. Bi, S. Geng, J. Mater. Sci. Technol. 90, 133 (2021)
DOI URL |
[18] | Y. Alshammari, L. Bolzoni, J. Mech. Behavior. Biomed. Mater. S 19, 30168 (2019) |
[19] |
L. Bolzoni, J. Mech. Behavior. Biomed. Mater. 97, 41 (2019)
DOI URL |
[20] |
L. Zhang, S. Fu, X. Wang, X. Li, Y. Liu, Q. Ma, K. Liu, S. Zhu, W. Qin, F. Chen, Rare Met. 38, 476 (2019)
DOI |
[21] |
E. Zhang, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C 33, 4280 (2013)
DOI URL |
[22] |
F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Mater. Sci. Eng. C 35, 392 (2014)
DOI URL |
[23] |
R. Liu, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34, 1112 (2018)
DOI URL |
[24] |
H. Wua, Y. Chao, H. Chang, K. Du, Mater. Sci. Eng. C 108, 110433 (2020)
DOI URL |
[25] |
Z. Zhang, G. Zheng, H. Li, L. Yang, X. Wang, G. Qin, E. Zhang, Mater. Sci. Eng. C 94, 376 (2019)
DOI URL |
[26] | M. Vilardella, I. Yadroitsav, M. Albu, N. Takatad, M. Kobashi, P. Krakhmalev, G. Kothleitner, D. Plessis, Addit. Manuf. 36, 101436 (2020) |
[27] |
S. Gollapudi, R. Sarkar, C. Babu, R. Sankarasubramanian, K. Nandy, K. Gogia, Mater. Sci. Eng. A 528, 6794 (2011)
DOI URL |
[28] |
A. Souza, M. Afonso, L. Ferrandini, A. Coelho, R. Caram, Mater. Sci. Eng. C 29, 1023 (2009)
DOI URL |
[29] |
E. Zhang, X. Wang, M. Chen, B. Hou, Mater. Sci. Eng. C 69, 1210 (2016)
DOI URL |
[30] |
C. Tsao, Mater. Sci. Eng. A 698, 98 (2017)
DOI URL |
[31] | A. Mantri, T. Alam, Y. Zheng, C. Williams, R. Banerjee, Addit. Manuf. 32, 101067 (2020) |
[32] |
G. Pina, V. Amigó, L. Muñoz, Corros. Sci. 109, 115 (2016)
DOI URL |
[33] | W. Ziaja, Adv. Properties Cont. 51000 (2013) |
[34] | V.N. Moiseyev, Titanium Alloys: Russian Aircraft and Aerospace Applications, (CRC Press 2005). https://doi.org/10.1201/9781420037678 |
[35] |
G. Glavicic, D. Miller, L. Semiatin, Scr. Mater. 54, 281 (2006)
DOI URL |
[36] |
A.A. Salem, M.G. Glavicic, S.L. Semiatin, Mater. Sci. Eng. A 494(1-2), 350-359 (2008). https://doi.org/10.1016/j.msea.2008.06.022
DOI URL |
[37] |
D. Lunt, R. Thomas, D. Atkinson, A. Smith, R. Sandala, D. Fonseca, M. Preuss, Acta Mater. 216, 117111 (2021)
DOI URL |
[38] |
H. Kim, L. Semiatin, S. Lee, Mater. Sci. Eng. A 394, 366 (2005)
DOI URL |
[39] |
H. Kim, L. Semiatin, S. Lee, Acta Mater. 51, 5613 (2003)
DOI URL |
[40] |
P. Karasevskaya, M. Ivasishin, L. Semiatin, V. Matviychuk, Mater. Sci. Eng. A 354, 121 (2003)
DOI URL |
[41] |
M. Lvasishin, E. Markovsky, V. Shevchenko, V. Ulshin, Mater. Sci. Eng. A 337, 88 (2002)
DOI URL |
[42] |
N. Srinivasan, R. Velmurugan, K. Singh, B. Pant, R. Kumar, Mater. Charact. 164, 110349 (2020)
DOI URL |
[43] | G. Lütjering, C. Williams, Titanium: Engineering Materials and Processes, 2nd edn. (2007) |
[44] |
J. Zhao, L. Lv, K. Wang, G. Liu, J. Mater. Sci. Technol. 38, 125 (2020)
DOI |
[45] |
S.D. Sun, Y.Y. Zong, D.B. Shan, B. Guo, Trans. Nonferrous Met. Soc. China 20, 2181 (2010)
DOI URL |
[46] |
G.V.S. Gajula Gowthami, N. Rao, G. Amit Bhattacharjee, M. Reddy, Mater. Sci. Eng. A 784, 139318 (2020). https://doi.org/10.1016/j.msea.2020.139318
DOI URL |
[47] |
S. Dyakonov, E. Zemtsova, S. Mironov, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, Mater. Sci. Eng. A 648, 305 (2015)
DOI URL |
[48] |
G. Zheng, X. Mao, B. Tang, Y. Zhang, J. Alloys Compd. 831, 154750 (2020)
DOI URL |
[49] |
X. Gao, W. Zeng, S. Zhang, Q. Wang, Acta Mater. 122, 298 (2017)
DOI URL |
[50] |
S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Acta Mater. 57, 2470 (2009)
DOI URL |
[51] |
Z. Valiev, G. Langdon, Metall. Mater. Trans. A 42, 2942 (2010)
DOI URL |
[52] |
S. Ozan, J. Lin, Y. Zhang, Y. Li, C. Wen, J. Mater. Res. Technol. 9, 2308 (2020)
DOI URL |
[53] |
W. Xu, D. Zeng, D. Zhou, T. He, C. Jia, Trans. Nonferrous Met. Soc. China 31, 3428 (2021)
DOI URL |
[54] |
M. Stapleton, L. Raghunathan, L. Bantounas, J. Stone, C. Lindley, D. Dye, Acta Mater. 56, 6186 (2008)
DOI URL |
[55] |
S. Waheed, Z. Zheng, D.S. Balint, F.P.E. Dunne, Acta Mater. 162, 136 (2019)
DOI |
[56] |
B. Chun, H. Yu, L. Semiatin, K. Hwang, Mater. Sci. Eng. A 398, 209 (2005)
DOI URL |
[57] |
S. Dyakonov, S. Mironov, P. Semenova, Z. Valiev, L. Semiatin, Acta Mater. 173, 174 (2019)
DOI |
[58] |
Z. Zeng, S. Jonsson, J. Roven, Acta Mater. 57, 5822 (2009)
DOI URL |
[1] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[2] | Zhenbo Zuo, Rui Hu, Xian Luo, Qingxiang Wang, Chenxi Li, Zhen Zhu, Jian Lan, Shujin Liang, Hongkui Tang, Kang Zhang. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1221-1234. |
[3] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[4] | Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219. |
[5] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[6] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[7] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
[8] | E. E. Timofeeva, E. Yu. Panchenko, A. S. Eftifeeva, A. I. Tagiltsev, N. Yu. Surikov, A. B. Tokhmetova, E. I. Yanushonite, M. V. Zherdeva, I. Karaman, Yu. I. Chumlyakov. Cyclic Stability of Superelasticity in [001]-Oriented Quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 650-660. |
[9] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
[10] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[11] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[12] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[13] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[14] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[15] | Bing-Yu Qian, Rui-Zhi Wu, Jian-Feng Sun, Jing-Huai Zhang, Le-Gan Hou, Xiao-Chun Ma, Jia-Hao Wang, Hai-Ting Hu. Evolutions of Microstructure and Mechanical Properties in Mg-5Li-1Zn-0.5Ag-0.5Zr-xGd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 215-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||