Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (4): 633-647.DOI: 10.1007/s40195-023-01649-x
Previous Articles Next Articles
Chuan Rong1, Jieren Yang1(), Xiaoliang Zhao1, Ke Huang1, Ying Liu1, Xiaohong Wang2, Dongdong Zhu2, Ruirun Chen3
Received:
2023-08-21
Revised:
2023-10-25
Accepted:
2023-11-12
Online:
2024-04-10
Published:
2024-01-19
Contact:
Jieren Yang, yangjieren@scu.edu.cn
Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Microstructure of the TiNbZrTaHf alloy after 85% reduction in thickness (the cold rolling direction is horizontal), b line profiles of the misorientation angle along the arrow AB, c pole figure of grain 1 (G1) and grain 2 (G2), d the kernel average misorientation (KAM) mapping, e boundary misorientation distribution
Fig. 3 Microstructures and grain diameter distribution histogram of TiNbZrTaHf after 85% thickness reduction and annealing at 1000 °C for a, b 1 h, c, d 4 h, e, f 24 h, g, h 500 h. Low angle boundaries (LABs) with misorientations (θ), 2° ≤ θ < 15° and high angle boundaries (HABs) with θ ≥ 15° are shown in white and black lines, respectively
Fig. 4 Invert pole figures for the normal (ND), rolling (RD) and transverse (TD) directions of TiNbZrTaHf alloys a after 85% cold-rolled and annealing at 1000 °C for b 1 h, c 24 h
Fig. 6 In-situ microstructure evolution in the cold-rolled TiNbZrTaHf alloy during continuous heating at ~ 280 K/min: a 22 °C, b 1200 °C, c 1300 °C, d 1400 °C
Fig. 8 a-f Needlelike precipitation during isothermal holding at 1400 °C: a 22 min, b 23 min, c 24 min, d 25 min, e 26 min, f 27 min, and g EDS maps after annealing at 1400 °C for 1 h
Fig. 9 Engineering stress vs. engineering strain tensile curves of as-cast, cold rolled and annealed TiNbZrTaHf alloy. The inset shows the geometry of the tensile sample (R, radius of curvature)
Alloy | σ0.2 (MPa) | σb (MPa) | εe (%) |
---|---|---|---|
As-cast | 639 | 668 | 27.9 |
85% cold rolling | 1089 | 1137 | 25.1 |
1200 °C, 1 h | 803 | 863 | 28.5 |
Table 1 RT tensile properties of TiNbZrTaHf refractory alloy
Alloy | σ0.2 (MPa) | σb (MPa) | εe (%) |
---|---|---|---|
As-cast | 639 | 668 | 27.9 |
85% cold rolling | 1089 | 1137 | 25.1 |
1200 °C, 1 h | 803 | 863 | 28.5 |
Fig. 11 Engineering stress vs. engineering strain tensile curves of a as-cast, b cold-rolled with 85% reduction, c annealed 1 h at 1200 °C of TiNbZrTaHf alloy
Fig. 12 SEM images of the tensile fracture surface of TiNbZrTaHf tested at elevated temperature: as-cast alloy at a 800 °C and b 900 °C, cold-rolled alloy at c 800 °C and d 900 °C, 1200 °C annealed 1 h alloy at e 800 °C, f 900 °C
Fig. 13 Annealed microstructures of TiNbZrTaHf alloy after cold rolling (85% reduction) for 1 h: a 800 °C, b 850 °C, c 900 °C, boundary misorientation distribution at d 800 °C, e 850 °C, f grain diameter distribution histogram
Treatment temperature | Region | Ti | Nb | Zr | Ta | Hf | O |
---|---|---|---|---|---|---|---|
1000 °C | A | 8.51 | 4.08 | 24.81 | 11.98 | 22.50 | 28.12 |
B | 22.19 | 17.17 | 8.25 | 20.00 | 14.34 | 18.08 | |
1200 °C | C | 53.89 | 0.72 | 0.07 | 0.40 | 0.06 | 44.85 |
D | 1.87 | 1.31 | 6.64 | 7.01 | 12.73 | 70.44 | |
E | 7.71 | 33.73 | 0.01 | 35.12 | 1.92 | 23.12 |
Table 2 EDS analysis of selected regions in Fig. 15 (at.%)
Treatment temperature | Region | Ti | Nb | Zr | Ta | Hf | O |
---|---|---|---|---|---|---|---|
1000 °C | A | 8.51 | 4.08 | 24.81 | 11.98 | 22.50 | 28.12 |
B | 22.19 | 17.17 | 8.25 | 20.00 | 14.34 | 18.08 | |
1200 °C | C | 53.89 | 0.72 | 0.07 | 0.40 | 0.06 | 44.85 |
D | 1.87 | 1.31 | 6.64 | 7.01 | 12.73 | 70.44 | |
E | 7.71 | 33.73 | 0.01 | 35.12 | 1.92 | 23.12 |
Fig. 15 a BSE image after annealing at 1000 °C for 500 h, b the EBSD image and c the related phase distribution, d, e BSE images after annealing at 1200 °C for 500 h and f its XRD pattern
[1] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010)
DOI URL |
[2] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011)
DOI URL |
[3] |
J.W. Yeh, JOM 65, 1759 (2013)
DOI URL |
[4] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)
DOI URL |
[5] |
F.G. Coury, M. Kaufman, A.J. Clarke, Acta Mater. 175, 66 (2019)
DOI URL |
[6] |
Q. Li, H. Zhang, D. Li, Z. Chen, Z. Qi, Int. J. Refract. Met. Hard Mater. 93, 105370 (2020)
DOI URL |
[7] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012)
DOI URL |
[8] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[9] |
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33, 3092 (2018)
DOI URL |
[10] |
O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 565, 51 (2013)
DOI URL |
[11] | R.K. Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, Y.Z. Fang, Y. Zhang, J.Z. Jiang, Adv. Eng. Mater. 22, 2000466 (2020) |
[12] |
C.H. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.C. Chou, P.K. Liaw, W.A. Curtin, Nat. Commun. 12, 5474 (2021)
DOI |
[13] |
J.P. Couzinie, L. Lilensten, Y. Champion, G. Dirras, L. Perriere, I. Guillot, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 645, 255 (2015)
DOI URL |
[14] |
B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohenwarter, Acta Mater. 142, 201 (2018)
DOI URL |
[15] |
S. Wang, M. Wu, D. Shu, G. Zhu, D. Wang, B. Sun, Acta Mater. 201, 517 (2020)
DOI URL |
[16] |
H.Y. Yasuda, Y. Yamada, K. Cho, T. Nagase, Mater. Sci. Eng. A 809, 140983 (2021)
DOI URL |
[17] |
C.J. Liu, C. Gadelmeier, S.L. Lu, J.W. Yeh, H.W. Yen, S. Gorsse, U. Glatzel, A.C. Yeh, Acta Mater. 237, 118188 (2022)
DOI URL |
[18] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509, 6043 (2011)
DOI URL |
[19] |
O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, J. Mater. Sci. 47, 4062 (2012)
DOI URL |
[20] |
O.N. Senkov, S.L. Semiatin, J. Alloys Compd. 649, 1110 (2015)
DOI URL |
[21] | O.N. Senkov, A.L. Pilchak, S.L. Semiatin, Metall. Mater. Trans. A 49, 2876 (2018) |
[22] |
S. Zherebtsov, N. Yurchenko, D. Shaysultanov, M. Tikhonovsky, G. Salishchev, N. Stepanov, Adv. Eng. Mater. 22, 2000105 (2020)
DOI URL |
[23] |
C. Zhang, H. Wang, X. Wang, Y.T. Tang, Q. Yu, C. Zhu, M. Xu, S. Zhao, R. Kou, X. Wang, B.E. MacDonald, R.C. Reed, K.S. Vecchio, P. Cao, T.J. Rupert, E.J. Lavernia, Acta Mater. 245, 118602 (2023)
DOI URL |
[24] |
N. Larianovsky, A. Katz-Demyanetz, E. Eshed, M. Regev, Materials 10, 883 (2017)
DOI URL |
[25] |
N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Lett. 211, 87 (2018)
DOI URL |
[26] |
C. Yang, K. Aoyagi, H. Bian, A. Chiba, Mater. Lett. 254, 46 (2019)
DOI URL |
[27] |
P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu, J. Mater. Sci. Technol. 122, 243 (2022)
DOI URL |
[28] |
G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinié, L. Perrière, T. Chauveau, I. Guillot, Mater. Sci. Eng. A 654, 30 (2016)
DOI URL |
[29] |
J. Zhang, C. Gadelmeier, S. Sen, R. Wang, X. Zhang, Y. Zhong, U. Glatzel, B. Grabowski, G. Wilde, S.V. Divinski, Acta Mater. 233, 117970 (2022)
DOI URL |
[30] | G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals (CRC Press, Roca Baton, 2010) |
[31] |
B. Chen, L. Zhuo, Int. J. Refract. Met. Hard Mater. 110, 105993 (2023)
DOI URL |
[32] |
J. Čížek, P. Haušild, M. Cieslar, O. Melikhova, T. Vlasák, M. Janeček, R. Král, P. Harcuba, F. Lukáč, J. Zýka, J. Málek, J. Moon, H.S. Kim, J. Alloys Compd. 768, 924 (2018)
DOI URL |
[33] |
S. Chen, W. Li, F. Meng, Y. Tong, H. Zhang, K.K. Tseng, J.W. Yeh, Y. Ren, F. Xu, Z. Wu, P.K. Liaw, Scr. Mater. 200, 113919 (2021)
DOI URL |
[34] |
Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84, 153 (2017)
DOI URL |
[35] | W. Wang, Z. Zhang, J. Niu, H. Wu, S. Zhai, Y. Wang, Mater. Today Commun. 16, 242 (2018) |
[36] |
Q. Wei, Q. Shen, J. Zhang, B. Chen, G. Luo, L. Zhang, Int. J. Refract. Met. Hard Mater. 77, 8 (2018)
DOI URL |
[37] |
K.K. Tseng, C.C. Juan, S. Tso, H.C. Chen, C.W. Tsai, J.W. Yeh, Entropy 21, 15 (2019)
DOI URL |
[38] |
X.J. Fan, R.T. Qu, Z.F. Zhang, J. Mater. Sci. Technol. 123, 70 (2022)
DOI |
[39] |
R.R. Eleti, T. Bhattacharjee, A. Shibata, N. Tsuji, Acta Mater. 171, 132 (2019)
DOI URL |
[40] |
R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Acta Mater. 183, 64 (2020)
DOI URL |
[41] |
M. Feuerbacher, M. Heidelmann, C. Thomas, Philos. Mag. 95, 1221 (2015)
DOI URL |
[42] |
C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, J. Alloys Compd. 583, 162 (2014)
DOI URL |
[43] |
B. Gorr, S. Schellert, F. Muller, H.J. Christ, A. Kauffmann, M. Heilmaier, Adv. Eng. Mater. 23, 2001047 (2021)
DOI URL |
[44] | F.J. Humphreys, M. Hatherly, Recrystallisation and related annealing phenomena, 2nd edn. (Elsevier, Oxford, 2004), p.337 |
[45] |
C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, Mater. Lett. 184, 200 (2016)
DOI URL |
[46] |
H. Gleiter, Phys. Status Solidi B-Basic Res. 45, 9 (1971)
DOI URL |
[47] |
S.M. Chen, Z.J. Ma, S. Qiu, L.J. Zhang, S.Z. Zhang, R. Yang, Q.M. Hu, Acta Mater. 225, 117582 (2022)
DOI URL |
[48] | X. Huang, L. Liu, W. Liao, J. Huang, H. Sun, C. Yu, Acta Metall. Sin. -Engl. Lett. 34, 1546 (2021) |
[49] |
J.R. Yang, X. Fang, Y. Liu, Z.T. Gao, M. Wen, R. Hu, Rare Met. 40, 3588 (2021)
DOI |
[50] |
C.H. Chang, M.S. Titus, J.W. Yeh, Adv. Eng. Mater. 20, 1700948 (2018)
DOI URL |
[51] |
L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197, 20 (2020)
DOI URL |
[52] |
L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197, 81 (2020)
DOI URL |
[53] |
L.H. Mills, M.G. Emigh, C.H. Frey, N.R. Philips, S.P. Murray, J. Shin, D.S. Gianola, T.M. Pollock, Acta Mater. 245, 118618 (2023)
DOI URL |
[54] |
S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T.K. Tsao, U. Klement, D. Canadinc, H. Murakami, S. Guo, Intermetallics 97, 58 (2018)
DOI URL |
[55] |
Y. Tan, Z. Teng, P. Jia, X. Zhou, H. Zhang, Corros. Sci. 191, 109758 (2021)
DOI URL |
[56] | X.J. Hua, P. Hu, H.R. Xing, J.Y. Han, S.W. Ge, S.L. Li, C.J. He, K.S. Wang, C.J. Cui, Acta Metall. Sin. -Engl. Lett. 35, 1231 (2022) |
[1] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[2] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
[3] | Lu Xiao, Ting-Ting Liu, Yue Chu, Bo Song, Jie Zhao, Xian-Hua Chen, Kai-Hong Zheng, Fu-Sheng Pan. Effect of Ti Particles on the Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 513-524. |
[4] | Jin-Kai Zhang, Cui-Ju Wang, Yi-Dan Fan, Chao Xu, Kai-Bo Nie, Kun-Kun Deng. Effect of Tip Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 551-560. |
[5] | Peitang Zhao, Xuejian Li, Hailong Shi, Xiaoshi Hu, Chunlei Zhang, Chao Xu, Xiaojun Wang. Fabrication, Microstructure and Mechanical Properties of in situ GNPs Reinforced Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 561-569. |
[6] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[7] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[8] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[9] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[10] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[11] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[12] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[13] | Xiao-Yang Yi, Wei Liu, Yun-Fei Wang, Bo-Wen Huang, Xin-Jian Cao, Kui-Shan Sun, Xiao Liu, Xiang-Long Meng, Zhi-Yong Gao, Hai-Zhen Wang. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1247-1260. |
[14] | Wenhe Li, Wenshuang Gu, Yuqiu Chen, Jun Gong, Zhiliang Pei, Chao Sun. Microstructure, Mechanical, and Tribological Properties of Amorphous WB2/Ti Multilayer Coatings [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1385-1396. |
[15] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||