Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 353-363.DOI: 10.1007/s40195-023-01630-8
Previous Articles Next Articles
Qianwen Zhang1,2, Tianle Li3, Yanbin Han2, Wei Zheng2, Xifeng Li3(), Jianjun Wu1
Received:
2023-07-07
Revised:
2023-09-16
Accepted:
2023-10-03
Online:
2024-02-10
Published:
2024-02-27
Contact:
Xifeng Li, Qianwen Zhang, Tianle Li, Yanbin Han, Wei Zheng, Xifeng Li, Jianjun Wu. Superplastic Tension Behavior of Dissimilar TC4/SP700 Laminate through Diffusion Bonding[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 353-363.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Secondary electron (SE) micrographs showing microstructures a, b and 3D topography maps c, d of Ti plate surfaces prior to diffusion bonding: a, c TC4 alloy, b, d SP700 alloy, e schematic sketch showing the initial void height
Fig. 3 SEM images at the bonded interfaces a, b, c and substrates d, e of TC4/SP700 alloys under different pressures: a 3 MPa, b 5 MPa, c 10 MPa, d TC4 layer, e SP700 layer (voids are enveloped by yellow circles)
Fig. 4 EBSD analysis on TC4/SP700 laminate after diffusion bonding at parameters of 800 ℃/1 h/10 MPa: a, b TC4 layer, c, d SP700 layer, e, f bonded interface, a, c grain size maps based on the circle equivalent diameter, b, d inverse pole figure (IPF) maps, e image quality map, f distribution of deformed (red), substructured (yellow) and recrystallized (blue) α grains (β grains are marked by gray, RD: rolling direction, ND: normal direction)
Fig. 5 Engineering stress-strain curves of multilayered TC4/SP700 alloys at various temperatures: a 700 ℃ (specimens before and after superplastic tension in the inset), b 750 ℃, c 800 ℃, d peak stresses with various temperatures and strains
Fig. 6 Activation energy and stress exponent of superplastic deformation based on the relationship between a liner relationship between \(\ln \dot{\varepsilon }\) and \(\ln \sigma\), b liner relationship between \(\ln \sigma\) and 1/T
Fig. 7 EBSD and TEM observations on TC4 a, c, e, f and SP700 b, d alloys after superplastic deformation at different temperatures and strain rates: a, b 700 ℃ and 0.005 s−1, c-f 800 ℃ and 0.0005 s−1. a-d Phase images on top of the image quality maps, e dark-field image showing α precipitates from β grain in TC4 alloy, f pole figure (PF) map showing the symmetrical relationship of crystal planes and crystal directions
Fig. 8 TEM observation showing microstructure and dislocations in TC4 layer a, b and SP700 layer c, d after superplastic deformation at 750 ℃ and 0.001 s−1: a-d bright-field images, (a1-d1) dark-field images, and selected area electron diffraction (SAED)
Fig. 9 EBSD analysis after superplastic deformation at 700 ℃ and 0.005 s−1: a-c SP700 alloy, d-f TC4 alloy, a, d phase images, b, e KAM maps, c, f image quality maps showing lattice distortion
Fig. 11 Fracture morphology of dissimilar TC4/SP700 laminate subjected to superplastic deformation and quasi-static tension: a overview image showing the fracture surface of layers and interface, b TC4 layer, c SP700 layer
[1] |
A. Gupta, R. Khatirkar, J. Singh, J. Alloys Compd. 899, 163242 (2022)
DOI URL |
[2] |
D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)
DOI URL |
[3] | K. Wang, H.H. Li, Y. Zhou, J.F. Wang, R.L. Xin, Q. Liu, Acta Metall. Sin. -Engl. Lett. 36, 353 (2023) |
[4] |
T.L. Li, L.X. Zhong, H.P. Wu, D.Y. An, X.F. Li, J. Chen, J. Alloys Compd. 918, 165816 (2022)
DOI URL |
[5] |
T.L. Li, Q.W Zhang, Y.B. Han, L.N. Zhao, D.Y. An, H.P. Wu, X.F. Li, J. Chen, Mater. Sci. Eng. A 869, 144811 (2023).
DOI URL |
[6] | S.P. Akula, M. Ojha, K.L. Rao, A.K. Gupta, Mater. Today Commun. 34, 105343 (2023) |
[7] |
T.L. Li, H.P. Wu, B. Wang, S. Li, X.F. Li, Int. J. Fatigue 156, 106646 (2021)
DOI URL |
[8] | X.F. Li, T.L. Li, D.Y. An, H.P. Wu, J.S. Chen, J. Chen, Acta Metall. Sin. 58, 473 (2022) |
[9] | Z.Q. Li, B. Zhao, J. Shao, S.J. Liu, Int. J. Light. Mater. Manuf. 2, 1 (2019) |
[10] |
T.G. Langdon, J. Mater. Sci. 44, 5998 (2009)
DOI URL |
[11] |
S. Roy, S. Suwas, Mater. Sci. Eng. A 574, 205 (2013)
DOI URL |
[12] |
J.Z. Yang, J.J. Wu, H.N. Xie, Z.G. Li, K.W. Wang, Trans. Nonferrous Met. Soc. China 33, 777 (2023)
DOI URL |
[13] |
S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, SYu. Mironov, S.L. Semiatin, Scr. Mater. 51, 1147 (2004)
DOI URL |
[14] | G.S. Dyakonov, G.I. Raab, M.V. Pesin, A.V. Polyakov, I.P. Semenova, R.Z. Valiev, Adv. Eng. Mater. 24, 1 (2022) |
[15] |
E. Alabort, D. Putman, R.C. Reed, Acta Mater. 95, 428 (2015)
DOI URL |
[16] |
J.Q. Lu, J.N. Qin, W.J. Lu, Y.F. Chen, Z.W. Zhang, D. Zhang, H.L. Hou, Mater. Sci. Eng. A 527, 4875 (2010)
DOI URL |
[17] |
W.D. Brewer, R.K. Bird, T.A. Wallace, Mater. Sci. Eng. A 243, 299 (1998)
DOI URL |
[18] |
N. Tian, W.J. Ye, X.Y. Song, S.X. Hui, Materials 15, 1 (2022)
DOI URL |
[19] | T.L. Li, H.P. Wu, D.Y. An, J. Chen, X.F. Li, J. Chen, Scr. Mater. 220, 1 (2022) |
[20] |
H.T. Gao, C. Kong, H.L. Yu, Trans. Nonferrous Met. Soc. China 33, 337 (2023)
DOI URL |
[21] |
S.T. Yan, Z.X. Qi, Y. Chen, Y.D. Cao, J.P. Zhang, G. Zheng, F.G. Chen, T. Bian, G. Chen, Acta Mater. 215, 117091 (2021)
DOI URL |
[22] |
Y. Yin, W. Kou, Y. Zhao, W. Huo, W. Zeng, Mater. Sci. Eng. A 841, 143005 (2022)
DOI URL |
[23] |
Y.T. Zhu, X.L. Wu, Prog. Mater. Sci. 131, 101019 (2023)
DOI URL |
[24] | Z.G. Luo, G.L. Wang, G.M. Xie, L.P. Wang, K. Zhao, Acta Metall. Sin. -Engl. Lett. 26, 754 (2013) |
[25] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21, 713 (2018)
DOI URL |
[26] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A. 112, 14501 (2015) |
[27] |
T.L. Li, F.J. Zhou, L.Z. Long, B. Wang, Z.J. Tang, X.F. Li, Mater. Charact. 200, 112825 (2023)
DOI URL |
[28] |
H.P. Wu, W.B. Yang, H.L. Peng, X.F. Li, J. Chen, J. Manuf. Process. 57, 477 (2020)
DOI URL |
[29] |
C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944)
DOI URL |
[30] |
S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W. Lu, A.J. Breen, B. Gault, D. Ponge, Acta Mater. 194, 106 (2020)
DOI URL |
[31] |
Y. Tong, J.C. Qiao, Y. Yao, Mater. Sci. Eng. A 730, 137 (2018)
DOI URL |
[32] |
Y.L. Yang, L.H. Zhan, C.H. Liu, X. Wang, Q. Wang, Z.M. Tang, G.P. Li, M.H. Huang, Z.G. Hu, Int. J. Plast. 127, 102646 (2020)
DOI URL |
[33] |
J.Q. Zhang, H.S. Di, H.T. Wang, K. Mao, T.J. Ma, Y. Cao, J. Mater. Sci. 47, 4000 (2012)
DOI URL |
[34] |
T. Liu, L. Germain, J. Teixeira, E. Aeby-Gautier, N. Gey, Acta Mater. 141, 97 (2017)
DOI URL |
[35] |
A.O. Mosleh, A.D. Kotov, V. Vidal, A.G. Mochugovskiy, V. Velay, A.V. Mikhaylovskaya, Mater. Sci. Eng. A 802, 140626 (2021)
DOI URL |
[36] |
J. Koike, Y. Shimoyama, I. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, K. Maruyama, Acta Mater. 48, 2059 (2000)
DOI URL |
[37] |
H. Nakajima, M. Koiwa, S. Ono, Scr. Metall. 17, 1431 (1983)
DOI URL |
[38] |
J.A. Wert, N.E. Paton, Metall. Trans. A 14, 2535 (1983)
DOI URL |
[39] |
D.D. Wang, Q.B. Fan, R. Shi, Y. Zhou, H.C. Gong, L. Wang, Y.F. Xue, Y. Ren, Mater. Sci. Eng. A 779, 139154 (2020)
DOI URL |
[40] |
Q.F. Zhang, M. Jin, Y.S. Zhang, H.Y. Wang, L. Chen, S. Yang, B.F. Guo, Mater. Sci. Eng. A 843, 143110 (2022)
DOI URL |
[41] |
X. Wang, M. Jahazi, S. Yue, Mater. Sci. Eng. A 434, 188 (2006)
DOI URL |
[42] |
J. Han, J.H. Nam, Y.K. Lee, Acta Mater. 113, 1 (2016)
DOI URL |
[43] |
J.F. Zhao, M. Zaiser, X.C. Lu, B. Zhang, C.X. Huang, G.Z. Kang, X. Zhang, Int. J. Plast. 145, 103063 (2021)
DOI URL |
[44] |
C.F.O. Dahlberg, Y. Saito, M.S. Öztop, J.W. Kysar, J. Mech. Phys. Solids 105, 131 (2017)
DOI URL |
[1] | Wenquan Ding, Jieli Ma, Yong Jiang, Yiren Wang, Huiqun Liu. Developing Core-Shell Nano-Structures in FeCrAl-ODS Ferritic Alloys with the Co-Addition of Ni and Zr [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 364-372. |
[2] | Dongtian Yang, Liangyin Xiong, Hongbin Liao, Guoping Yang, Xiaoyu Wang, Shi Liu. Investigation on Strengthening Mechanism of China Low-Activation Ferrite Steel upon Thermo-Mechanical Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 373-387. |
[3] | X. Y. Yue, S. Y. Peng, X. Zhang, C. N. He, Y. Z. Tian. Distinct Electrical and Mechanical Responses of a Cu-10Fe Composite Prepared by Hot-Pressed Sintering and Post Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 255-265. |
[4] | Yong-Chao Gai, Rui Zhang, Chuan-Yong Cui, Zi-Jian Zhou, Yi Tan, Yi-Zhou Zhou, Xiao-Feng Sun. Hot Compression Behavior and Tensile Property of a Novel Ni-Co-Based Superalloy Prepared by Electron Beam Smelting Layered Solidification Technology [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 283-292. |
[5] | Lei Hu, Liqin Zhang, Feng Hu, Kuan Zheng, Guohong Zhang. Effect of Central Multiphase Microstructure of Thick Plates on Work Hardening and Crack Propagation [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 325-338. |
[6] | Yang Feng, Wenhuan Chen, Zheng Xu, Weijun He, Bin Jiang, Fusheng Pan. Fabrication of AZ31/Mg3Y Composites with Excellent Strength and Plasticity via Accumulated Rolling Bonding and Diffusion Annealing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 339-352. |
[7] | Junyi Ma, Lin Yu, Qing Yang, Jie Liu, Lei Yang. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 132-144. |
[8] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[9] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. |
[10] | Shuilong Huang, Qingjun Chen, Li Ji, Kan Wang, Guosheng Huang. Microstructure and Internal Friction Behavior of Laser 3D Printed Fe-Based Amorphous Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 196-204. |
[11] | Qiang Li, Xing-Ran Li, Bai-Xin Dong, Xiao-Long Zhang, Shi-Li Shu, Feng Qiu, Lai-Chang Zhang, Zhi-Hui Zhang. Metallurgy and Solidification Microstructure Control of Fusion-Based Additive Manufacturing Fabricated Metallic Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 29-53. |
[12] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[13] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[14] | Leilei Li, Kaikai Song, Qingwei Gao, Changshan Zhou, Xiaoming Liu, Yaocen Wang, Xiaojun Bai, Chongde Cao. Enhancing Strength-Ductility Synergy of CoCrNi-Based Medium-Entropy Alloy Through Coherent L12 Nanoprecipitates and Grain Boundary Precipitates [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 78-88. |
[15] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||