Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 373-387.DOI: 10.1007/s40195-023-01629-1
Previous Articles Next Articles
Dongtian Yang1,2, Liangyin Xiong1,2(), Hongbin Liao3, Guoping Yang3, Xiaoyu Wang3, Shi Liu1,2(
)
Received:
2023-06-28
Revised:
2023-09-03
Accepted:
2023-09-18
Online:
2024-02-10
Published:
2024-02-27
Contact:
Liangyin Xiong, Dongtian Yang, Liangyin Xiong, Hongbin Liao, Guoping Yang, Xiaoyu Wang, Shi Liu. Investigation on Strengthening Mechanism of China Low-Activation Ferrite Steel upon Thermo-Mechanical Treatment[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 373-387.
Add to citation manager EndNote|Ris|BibTeX
Fe | Cr | W | Mn | Ta | V | C | N | Ti | |
---|---|---|---|---|---|---|---|---|---|
CLF-1 | Bal | 8.5 | 1.5 | 0.5 | 0.08 | 0.24 | 0.1 | 0.15 | - |
CLF-P | Bal | 8.46 | 1.56 | 1.55 | 0.05 | 0.31 | 0.11 | - | 0.29 |
Table 1 Chemical composition of CLF-1 steel and CLF-P steel (wt%)
Fe | Cr | W | Mn | Ta | V | C | N | Ti | |
---|---|---|---|---|---|---|---|---|---|
CLF-1 | Bal | 8.5 | 1.5 | 0.5 | 0.08 | 0.24 | 0.1 | 0.15 | - |
CLF-P | Bal | 8.46 | 1.56 | 1.55 | 0.05 | 0.31 | 0.11 | - | 0.29 |
Fig. 2 Allocations of elements in precipitates: a variations of allocation of C element in M23C6, MC, matrix with temperature; b variations of allocation of Ti, Ta, V and W element in MC phase of CLF-P steel with temperature
Microstructure | N + T | TMTT70 | |||
---|---|---|---|---|---|
Temperature | 25 °C | 650 °C | 25 °C | 650 °C | |
Coarse particles (M23C6) | Size, nm | 106.85 ± 30.19 | 97.55 ± 44.52 | ||
Density, m−3 | 2.9 × 1019 | 3.08 × 1019 | |||
Δσppt, MPa | 103.12 | 73.64 | 101.54 | 72.51 | |
Fine particles (MC) | Size, nm | 16.19 ± 9.64 | 11.42 ± 4.88 | ||
Density, m−3 | 4.19 × 1020 | 3.36 × 1021 | |||
fv, % | 0.13% | 0.5% | |||
Δσppt, MPa | 91.32 | 65.21 | 253.9 | 181.31 | |
Dislocations | Density, m−2 | 2.18 × 1014 | 4.4 × 1014 | ||
Δσdisl, MPa | 216.23 | 154.41 | 307.2 | 219.37 | |
Lath subgrains | Width, nm | 287 ± 80 | 188 ± 57 | ||
Δσsgb, MPa | 204.11 | 145.76 | 311.6 | 222.51 | |
Grains | Size, μm | 12.07 ± 4.99 | 70.67 ± 15.65 | ||
Δσgb, MPa | 73.85 | 52.74 | 30.52 | 21.8 | |
Total strength (Δσ) | 466.93 | 333.44 | 626.79 | 447.59 |
Table 2 Comparison of microstructural components and predicted strengthening contributions at 25 °C and 650 °C for CLF-P steel in N + T and TMTT70 conditions
Microstructure | N + T | TMTT70 | |||
---|---|---|---|---|---|
Temperature | 25 °C | 650 °C | 25 °C | 650 °C | |
Coarse particles (M23C6) | Size, nm | 106.85 ± 30.19 | 97.55 ± 44.52 | ||
Density, m−3 | 2.9 × 1019 | 3.08 × 1019 | |||
Δσppt, MPa | 103.12 | 73.64 | 101.54 | 72.51 | |
Fine particles (MC) | Size, nm | 16.19 ± 9.64 | 11.42 ± 4.88 | ||
Density, m−3 | 4.19 × 1020 | 3.36 × 1021 | |||
fv, % | 0.13% | 0.5% | |||
Δσppt, MPa | 91.32 | 65.21 | 253.9 | 181.31 | |
Dislocations | Density, m−2 | 2.18 × 1014 | 4.4 × 1014 | ||
Δσdisl, MPa | 216.23 | 154.41 | 307.2 | 219.37 | |
Lath subgrains | Width, nm | 287 ± 80 | 188 ± 57 | ||
Δσsgb, MPa | 204.11 | 145.76 | 311.6 | 222.51 | |
Grains | Size, μm | 12.07 ± 4.99 | 70.67 ± 15.65 | ||
Δσgb, MPa | 73.85 | 52.74 | 30.52 | 21.8 | |
Total strength (Δσ) | 466.93 | 333.44 | 626.79 | 447.59 |
Fig. 7 X-ray diffraction patterns of CLF-P steel under different conditions: a matrix phase including full width at half maxima, b matrix phase of the crystal face (200)
Conditions | Dislocation density (m−2) |
---|---|
Normalized and tempered | 3.19 × 1014 |
TMT at 973 K | 12.52 × 1014 |
TMT and tempered at 1013 K | 4.66 × 1014 |
Table 3 Average dislocation density in CLF-P steel of different conditions as determined from modified Williamson-Hall method
Conditions | Dislocation density (m−2) |
---|---|
Normalized and tempered | 3.19 × 1014 |
TMT at 973 K | 12.52 × 1014 |
TMT and tempered at 1013 K | 4.66 × 1014 |
d1{020} (Å) | d2{1 \(\overline{1 }1\)} (Å) | d3{111} (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 2.133 | 2.492 | 2.596 | 123.33 | 69.43 | 55 |
TiC | 2.165 | 2.450 | 2.450 | 125.26 | 70.53 | 54.74 |
Table 4 Measured and calculated inter-planar distances (d) and angles (α) of the TiC particle in Fig. 10a
d1{020} (Å) | d2{1 \(\overline{1 }1\)} (Å) | d3{111} (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 2.133 | 2.492 | 2.596 | 123.33 | 69.43 | 55 |
TiC | 2.165 | 2.450 | 2.450 | 125.26 | 70.53 | 54.74 |
d1{\(\overline{2 }00\)} (Å) | d2{ \(0 \overline{4 }\overline{2 }\)} (Å) | d3{\(\overline{2 }\overline{4 }\overline{2 }\)} (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 5.543 | 2.499 | 2.224 | 90.50 | 25.10 | 64.40 |
\({M}_{23}{\mathrm{C}}_{6}\) | 5.319 | 2.379 | 2.171 | 90 | 24.09 | 65.91 |
Table 5 Measured and calculated inter-planar distances (d) and angles (α) of the M23C6 particle in Fig. 11a
d1{\(\overline{2 }00\)} (Å) | d2{ \(0 \overline{4 }\overline{2 }\)} (Å) | d3{\(\overline{2 }\overline{4 }\overline{2 }\)} (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 5.543 | 2.499 | 2.224 | 90.50 | 25.10 | 64.40 |
\({M}_{23}{\mathrm{C}}_{6}\) | 5.319 | 2.379 | 2.171 | 90 | 24.09 | 65.91 |
d1{ \(10 \overline{1 } 1\) } (Å) | d2{ \(0 \overline{1 }10\)} (Å) | d3{ \(1 \overline{1 } 01\) } (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 3.811 | 4.357 | 3.804 | 116.12 | 63.90 | 52.22 |
Laves | 3.615 | 4.094 | 3.615 | 116.20 | 63.80 | 52.40 |
Table 6 Measured and calculated inter-planar distances (d) and angles (α) of the Laves particle in Fig. 12a
d1{ \(10 \overline{1 } 1\) } (Å) | d2{ \(0 \overline{1 }10\)} (Å) | d3{ \(1 \overline{1 } 01\) } (Å) | α12 (°) | α23 (°) | α13 (°) | |
---|---|---|---|---|---|---|
Measured | 3.811 | 4.357 | 3.804 | 116.12 | 63.90 | 52.22 |
Laves | 3.615 | 4.094 | 3.615 | 116.20 | 63.80 | 52.40 |
[1] |
Y. Wu, Z. Chen, L. Hu, M. Jin, Y. Li, J. Jiang, J. Yu, C. Alejaldre, E. Stevens, K. Kim, D. Maisonnier, A. Kalashnikov, K. Tobita, D. Jackson, D. Perrault, Nat. Energy 11, 1 (2016)
DOI |
[2] | Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, S. Liu, Mater. Sci. Eng. A 657, 528 (2010) |
[3] | J. Chen, Y. Liu, Y. Xiao, Y. Liu, C. Liu, H. Li, Acta Metall. Sin. -Engl. Lett. 706, 31 (2018) |
[4] | J. Moon, T.H. Lee, S.D. Kim, C.H. Lee, J.H. Jang, J.H. Shin, J.W. Lee, B.H. Lee, D.W. Suh, Mater. Charact. 9, 170 (2020) |
[5] | J.G. Chen, C.X. Liu, C. Wei, Y.C. Liu, H.J. Li, Acta Metall. Sin. -Engl. Lett. 1151, 32 (2019) |
[6] | L. Tan, T.S. Byun, Y. Katoh, L.L. Snead, Acta Mater. 11, 71 (2014) |
[7] | X.F. Guo, J.M. Gong, Y. Jiang, D.S. Rong, Mater. Sci. Eng. A 199, 564 (2013) |
[8] | C.G. Panait, A. Zielinska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.F. Gourgues-Lorenzon, W. Bendick, Mater. Sci. Eng. A 4062, 527 (2010) |
[9] | L. Tan, L.L. Snead, Y. Katoh, J. Nucl. Mater. 42, 478 (2016) |
[10] | S.Z. Li, Z. Eliniyaz, F. Sun, Y.Z. Shen, L.T. Zhang, A.D. Shan, Mater. Sci. Eng. A 882, 559 (2013) |
[11] | S.Z. Li, Z. Eliniyaz, L.T. Zhang, F. Sun, Y.Z. Shen, A.D. Shan, Mater. Charact. 144, 73 (2012) |
[12] | R.Y. Zhou, L.H. Zhu, Y.P. Huang, Mater. Charact. 18, 190 (2022) |
[13] | W. Wang, S.J. Liu, G. Xu, B.R. Zhang, Q.Y. Huang, Nucl. Eng. Technol. 518, 48 (2016) |
[14] | K.C. Sahoo, J. Vanaja, P. Parameswaran, V.D. Vijayanand, K. Laha, Mater. Sci. Eng. A 54, 686 (2017) |
[15] | Z.F. Peng, Y.Y. Ren, Acta Metall. Sin. 472, 37 (2001) |
[16] | L. Cipolla, H.K. Danielsen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Acta Mater. 669, 58 (2010) |
[17] | P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G. Rao, K. Laha, Mater. Sci. Eng. A 171, 724 (2018) |
[18] | M. Nohrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, H. Leitner, Metall. Mater. Trans. A Phy. Metall. Mater. Sci. 4210, 45 (2014) |
[19] | R. Ravikirana, S. Mythili, S. Raju, T. Saroja, T. Jayakumar, E.R. kumar, Mater. Sci. Technol. 448, 31 (2015) |
[20] | P.A. Kumar, J. Vanaja, G.V.P. Reddy, G. Rao, Mater. Sci. Eng. A 15, 843 (2022) |
[21] |
Y. Gao, Z.M. Wang, Y.C. Liu, W.C. Li, C.X. Liu, H.J. Li, Metals 12, 8 (2018)
DOI URL |
[22] | T. Ungar, A. Borbely, Appl. Phys. Lett. 3173, 69 (1996) |
[23] | F. HajyAkbary, J. Sietsma, A.J. Bottger, M.J. Santofimia, Mater. Sci. Eng. A 208, 639 (2015) |
[24] | T. Ungar, G. Tichy, Phys. Status Solidi A Appl. Mat. 425, 171 (1999) |
[25] | L.Y. Zhang, L.M. Yu, Y.C. Liu, C.X. Liu, H.J. Li, J.F. Wu, Mater. Sci. Eng. A 66, 695 (2017) |
[26] | S. Zhu, M. Yang, X.L. Song, S. Tang, Z.D. Xiang, Mater. Charact. 60, 98 (2014) |
[27] | G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerjak, Mater. Charact. 341, 51 (2003) |
[28] | A.N. Christensen, R. Hmlinen, U. Turpeinen, A.F. Andresen, S.J. Cyvin, Acta Chem. Scand. 89-90, 32a (1978) |
[29] | A.L. Bowman, G.P. Arnold, E.K. Storms, N.G. Nereson, Acta Crystallogr. 3102, 28 (2010) |
[30] | P.Y. Yan, L.M. Yu, Y.C. Liu, C.X. Liu, L.J. Huijun, J.F. Wu, J. Alloys Compd. 368, 739 (2018) |
[31] | H. Chilukuru, K. Durst, S. Wadekar, M. Schwienheer, A. Scholz, C. Berger, K.H. Mayer, W. Blum, Mater. Sci. Eng. A 81, 510-511 (2009) |
[32] | L. Tan, J.T. Busby, P.J. Maziasz, Y. Yamamoto, J. Nucl. Mater. 713, 441 (2013) |
[33] | M. Taneike, F. Abe, K. Sawada, Nature 294, 424 (2003) |
[34] | A. Kostka, K.G. Tak, R.J. Hellmig, Y. Estrin, G. Eggeler, Acta Mater. 539, 55 (2007) |
[35] | K.S. Cho, S.S. Park, D.H. Choi, H. Kwon, J. Alloys Compd. 314, 626 (2015) |
[36] | G.E. Lucas, J. Nucl. Mater. 287, 206 (1993) |
[37] | I.G. Taylor, Proc. R. Soc. A 362, 145 (1934) |
[38] | J. Vivas, C. Capdevila, E. Altstadt, M. Houska, D. San-Martin, Scr. Mater. 14, 153 (2018) |
[1] | Peng-Da Huo, Feng Li, Wen-Tao Niu, Rong-He Gao, An-Xin Zhang. Microstructure Characteristics and Corrugation Interface Behavior of Al/Mg/Al Composite Plate Rolled Under Large Strain [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 827-838. |
[2] | Zhenzhen Gui, Fan Jiang, Zhixin Kang, Fan Zhang, Zu Li, Jianhui Zhang. Microstructure and Properties of Micro-Alloyed Mg-2.0Nd-0.2Sr by Heat Treatment and Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 323-334. |
[3] | Ji-Peng Zou, Xue-Mei Luo, Bin Zhang, Guo-Dong Liu, Hong-Lei Chen, Xiao-Fei Zhu, Wen-Ke Yang, Guang-Ping Zhang. Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2045-2057. |
[4] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[5] | Yubin Du, Xiaofeng Hu, Yuanyuan Song, Yangpeng Zhang, Lijian Rong. Effect of Nanoscale Cu-Riched Clusters on Strength and Impact Toughness in a Tempered Cu-Bearing HSLA Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 537-550. |
[6] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[7] | Hui Wang, Biao Guo, Xuguang An, Yu Zhang. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2101-2110. |
[8] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[9] | Guonan Ma, Dong Wang, Bolv Xiao, Zongyi Ma. Effect of Particle Size on Mechanical Properties and Fracture Behaviors of Age-Hardening SiC/Al-Zn-Mg-Cu Composites [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1447-1459. |
[10] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[11] | Qiu Zhang, Wencai Liu, Guohua Wu, Liang Zhang, Wenjiang Ding. Effect of Zn Addition on the Microstructure and Mechanical Properties of Cast Mg-10Gd-3.5Er-xZn-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1505-1517. |
[12] | Fengjiao Niu, Jianghua Chen, Cuilan Wu, Jing Wu, Xiandong Xu, Pan Xie, Xiongwei Yu. Improved Properties in Relation to Fine Precipitate Microstructures Tailored by Combinatorial Processes in an Al-Cu-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1527-1534. |
[13] | Bao-Jie Wang, Ji-Yu Luan, Dao-Kui Xu, Jie Sun, Chuan-Qiang Li, En-Hou Han. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 1-9. |
[14] | Yang Bai, Wei-Li Cheng, Shi-Chao Ma, Jun Zhang, Chen Guo, Yao Zhang. Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg-8Sn-4Zn-2Al Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487-495. |
[15] | Ke Zhang, Zhao-Dong Li, Xin-Jun Sun, Qi-Long Yong, Jun-Wei Yang, Yuan-Mei Li, Pei-Lin Zhao. Development of Ti-V-Mo Complex Microalloyed Hot-Rolled 900-MPa-Grade High-Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 641-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||