Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 364-372.DOI: 10.1007/s40195-023-01621-9
Previous Articles Next Articles
Wenquan Ding1, Jieli Ma1, Yong Jiang1,2(), Yiren Wang1, Huiqun Liu1
Received:
2023-04-08
Revised:
2023-04-28
Accepted:
2023-05-15
Online:
2024-02-10
Published:
2024-02-27
Contact:
Yong Jiang, Wenquan Ding, Jieli Ma, Yong Jiang, Yiren Wang, Huiqun Liu. Developing Core-Shell Nano-Structures in FeCrAl-ODS Ferritic Alloys with the Co-Addition of Ni and Zr[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 364-372.
Add to citation manager EndNote|Ris|BibTeX
Cr | Al | Ni | Zr | W | Y | O | C | |
---|---|---|---|---|---|---|---|---|
wt% | 14.8 | 2.40 | 5.91 | 0.74 | 1.99 | 0.25 | 0.28 | 0.06 |
at.% | 15.5 | 4.84 | 5.48 | 0.44 | 0.59 | 0.15 | 0.95 | 0.28 |
Table 1 Real chemical compositions of the new FeCrAl-ODS alloy
Cr | Al | Ni | Zr | W | Y | O | C | |
---|---|---|---|---|---|---|---|---|
wt% | 14.8 | 2.40 | 5.91 | 0.74 | 1.99 | 0.25 | 0.28 | 0.06 |
at.% | 15.5 | 4.84 | 5.48 | 0.44 | 0.59 | 0.15 | 0.95 | 0.28 |
Fig. 1 a HAADF-STEM image of the annealed Ni + Zr co-alloyed FeCrAl-ODS alloy and the EDS line scan profile across the grain boundary as indicated by a green line. b Bright-field TEM image with a higher magnification of the selected area in the red box in a. c Statistical size distribution of the ultra-fine nano-precipitates inside the selected area
Fig. 2 a Bright-field TEM image of dislocation walls and nano-precipitates in the annealed alloy sample. b FFT diffractogram showing a high degree of coherency between B2-NiAl nano-phase and the ferritic matrix. c Dark-field TEM image showing the bimodal size distribution of B2-NiAl nano-phases
Fig. 3 a High-magnification HAADF-STEM image and EDS element mapping of the nano-core inside a typical lager (Ni, Al)-rich shell. b FFT analysis suggesting that the nano-core is an Y4Al2O9 nano-phase, with highly coherency with the B2-NiAl shell and the ferritic matrix as well
Fig. 4 a 3D APT characterization showing that most of low nanometer NiAl-rich nano-particles contain an ultra-fine Y-Zr-O nano-core of ~ 10 nm in diameter. b HAADF-STEM image and EDS element mapping of a Y-Zr-O nano-core wrapped with an incomplete (Ni, Al)-rich shell. c FFT analysis suggesting that the nano-core is a highly coherent Y4Zr3O12 nano-phase
Temperature (℃) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
25 | 1095 ± 72 | 1280 ± 20 | 14.2 ± 0.1 |
600 | 497 ± 43 | 541.5 ± 35 | 27.9 ± 2.5 |
700 | 280 ± 23 | 318 ± 6 | 15.5 ± 0.2 |
800 | 207 ± 13 | 230.5 ± 7 | 13.9 ± 0.8 |
Table 2 Mechanical properties of the annealed new ODS alloy
Temperature (℃) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
25 | 1095 ± 72 | 1280 ± 20 | 14.2 ± 0.1 |
600 | 497 ± 43 | 541.5 ± 35 | 27.9 ± 2.5 |
700 | 280 ± 23 | 318 ± 6 | 15.5 ± 0.2 |
800 | 207 ± 13 | 230.5 ± 7 | 13.9 ± 0.8 |
Fig. 6 YS versus EL data of the new FeCrAl-ODS alloy in comparison with a variety of FeCrAl-ODS alloys in literature, including PM2000 [32,33,34], MA956 [32,33,34], 16Cr3Al [35], and 106YZ alloys [36] (HIP: hot-isostatic-pressing; HE: hot-extrusion; R: rolling; A: annealing)
[1] | Y. Yamamoto, Z. Sun, B.A. Pint, K.A. Terrani, Optimized Gen-II FeCrAl cladding production in large quantity for campaign testing. Oak Ridge: Oak Ridge National Lab. (ORNL), TN, United States. (2016) |
[2] |
K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448, 420 (2014)
DOI URL |
[3] | Y. Yamamoto, Y. Yang, K.G. Field, K. Terrani, B.A. Pint, L.L. Snead, Letter report documenting progress of second generation ATF FeCrAl alloy fabrication. FY14 FCRD Milestone Report, Oak Ridge National Lab (ORNL), Oak Ridge, TN, United States, June (2014) |
[4] |
Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He, M. Wang, Mater. Charact. 111, 122 (2016)
DOI URL |
[5] |
M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, J. Nucl. Mater. 329-333, 338 (2004)
DOI URL |
[6] |
N. Cunningham, Y. Wu, D. Klingensmith, G.R. Odette, Mater. Sci. Eng. A 613, 296 (2014)
DOI URL |
[7] | J. Knaster, A. Moeslang, T. Muroga, Nat. Phys. 12, 424 (2016) |
[8] |
S. Yang, J. Chen, H. Fu, P. Wang, P. Zheng, Fusion Eng. Des. 151, 111406 (2020)
DOI URL |
[9] |
L. Yang, Y. Jiang, Y. Wu, G.R. Odette, Z. Zhou, Z. Lu, Acta Mater. 103, 474 (2016)
DOI URL |
[10] | S. Ukai, M. Fujiwara, J. Nucl. Mater. 307, 749 (2002) |
[11] |
M. Klimiankou, R. Lindau, A. Mslang, Micron 36, 1 (2005)
PMID |
[12] |
S. Takaya, T. Furukawa, K. Aoto, G. Müller, A. Weisenburger, A. Heinzel, M. Inoue, T. Okuda, F. Abe, S. Ohnuki, T. Fujisawa, A. Kimura, J. Nucl. Mater. 386-388, 507 (2009)
DOI URL |
[13] |
P. Hosemann, H.T. Thau, A.L. Johnson, S.A. Maloy, N. Li, J. Nucl. Mater. 373, 246 (2008)
DOI URL |
[14] |
S. Takaya, T. Furukawa, M. Inoue, T. Fujisawa, T. Okuda, F. Abe, S. Ohnuki, A. Kimura, J. Nucl. Mater. 398, 132 (2010)
DOI URL |
[15] |
H.S. Cho, A. Kimura, S. Ukai, M. Fujiwara, J. Nucl. Mater. 329-333, 387 (2004)
DOI URL |
[16] |
R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, A. Kimura, J. Nucl. Mater. 367-370, 222 (2007)
DOI URL |
[17] |
P. Dou, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Acta Mater. 59, 992 (2011)
DOI URL |
[18] |
R. Kamikawa, S. Ukai, S. Kasai, N. Oono, S. Zhang, Y. Sugino, H. Masuda, E. Sato, J. Nucl. Mater. 511, 591 (2018)
DOI URL |
[19] |
Q. Qian, Y. Wang, Y. Jiang, C. He, T. Hu, J. Nucl. Mater. 518, 140 (2019)
DOI |
[20] | S. He, Q. Qian, Z. Huang, Y. Gong, J. Chen, Y. Wang, Y. Jiang, Acta Metall. Sin. -Engl. Lett. 34, 955 (2021) |
[21] |
H. Jia, R. Zhang, D. Long, Y. Sun, Z. Zhou, Mater. Sci. Eng. A 839, 142824 (2022)
DOI URL |
[22] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544, 460 (2017)
DOI URL |
[23] |
S.H. Kim, H. Kim, N.J. Kim, Nature 518, 77 (2015)
DOI |
[24] |
N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand, Acta Mater. 71, 89 (2014)
DOI URL |
[25] |
B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205, 116561 (2021)
DOI URL |
[26] |
Z.K. Teng, G. Ghosh, M.K. Miller, S. Huang, B. Clausen, D.W. Brown, P.K. Liaw, Acta Mater. 60, 5362 (2012)
DOI URL |
[27] |
R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara, J. Nucl. Mater. 307-311, 773 (2002)
DOI URL |
[28] |
Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, J. Nucl. Mater. 393, 114 (2009)
DOI URL |
[29] |
Z. Oksiuta, M. Lewandowska, K.J. Kurzydłowski, Mech. Mater. 67, 15 (2013)
DOI URL |
[30] |
A. Chauhan, D. Litvinov, J. Aktaa, J. Nucl. Mater. 468, 1 (2016)
DOI URL |
[31] |
J.H. Kim, T.S. Byun, D.T. Hoelzer, J. Nucl. Mater. 407, 143 (2010)
DOI URL |
[32] |
R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, J. Nucl. Mater. 341, 103 (2005)
DOI URL |
[33] | G. Korb, M. Rühle, H. Martinz, New iron-based ODS-superalloys for high demanding applications. in Proceedings of the ASME 1991 international gas turbine and aeroengine congress and exposition, Orlando, Florida, USA, 3-6 June 1991 |
[34] | J. Cole, J. Rempe, T. Totemeir, G. Was, K. Sridharan, T. Allen, Developing and evaluating candidate materials for generation IV supercritical water reactors-final technical report INERI 2003-008-K, Idaho National Laboratory, Idaho Falls (2006) |
[35] |
H. Dong, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Fusion Eng. Des. 125, 402 (2017)
DOI URL |
[36] |
C.P. Massey, S.N. Dryepondt, P.D. Edmondson, K.A. Terrani, S.J. Zinkle, J. Nucl. Mater. 512, 227 (2018)
DOI URL |
[37] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, C.T. Liu, Scr. Mater. 87, 45 (2014)
DOI URL |
[1] | Zeqin Cui, Lei Zhou, Xiaohu Hao, Mengda Luo, Wenxian Wang, Jianzhong Wang, Weiguo Li. Effect of Sintering Time on the Mechanical and Corrosion Behavior of Zn-Mg Composites with a Core-Shell Structure Prepared by SPS [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1305-1316. |
[2] | Chen Chen, Junjie Yu, Jingyu Lu, Jian Zhang, Xuan Su, Chen-Hao Qian, Yulin Chen, Weixi Ji, Manping Liu. Phase Transformation in Al/Zn Multilayers during Mechanical Alloying [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1709-1718. |
[3] | Hui Wang, Biao Guo, Xuguang An, Yu Zhang. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2101-2110. |
[4] | Chao-Min Zhang, Pan Xie, Yong Jiang, Sheng Zhan, Wen-Quan Ming, Jiang-Hua Chen, Ke-Xing Song, Hao Zhang. Double-Shelled L12 Nano-structures in Quaternary Al-Er-Sc-Zr Alloys: Origin and Critical Significance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1277-1284. |
[5] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[6] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[7] | Wenbo Liu, Zhe Liu, Huiqun Liu, Peinan Du, Ruiqian Zhang, Qing Wang. Dynamic Precipitation of Laves Phase and Grain Boundary Features in Warm Deformed FeCrAl Alloy: Effect of Zr [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1734-1746. |
[8] | U. K. Tarai, P. S. Robi, Sukhomay Pal. Thermal Properties of Ni-Cr-Si-B-Fe Based Interlayer Material and Its Application in TLP Bonding of IN 718 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1666-1680. |
[9] | Chaomin Zhang, Yong Jiang, Xiuhua Guo, Kexing Song. Formation and Relative Stabilities of Core-Shelled L12-Phase Nano-structures in Dilute Al-Sc-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1627-1634. |
[10] | J. Esquivel, R. K. Gupta. Corrosion Behavior and Hardness of Al-M (M: Mo, Si, Ti, Cr) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 333-341. |
[11] | Ruo-Shan Lei, Ming-Pu Wang. Effect of Milling Tools on the Microstructure and Property of Cu-Based Composites Prepared by Mechanical Alloying [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1155-1162. |
[12] | Sayyed Erfan Aghili,Mohammad Hossein Enayati,Fathallah Karimzadeh. Fabrication of Bulk (Fe,Cr)3Al/Al2O3 Intermetallic Matrix Nanocomposite Through Mechanical Alloying and Sintering [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 911-919. |
[13] | Alvaro Torres, Sergio Serna, Cristobal Patiño, Gerardo Rosas. Corrosion Behavior of Ψ and β Quasicrystalline Al-Cu-Fe Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1117-1122. |
[14] | Mohammad Hossein Enayati, Fathallah Karimzadeh, Soheil Sabooni, Majid Jafari. Phase Stability in Mechanically Alloyed Mg-Ni System Studied by Experiments and Thermodynamic Calculations [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1002-1007. |
[15] | Chong-Feng Sun, Sheng-Qi Xi, Yue Zhang, Xiao-Xue Zheng, Jing-En Zhou. Thermodynamic Characteristic and Phase Evolution in Immiscible Cr-Mo Binary Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 1074-1081. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||