Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1143-1156.DOI: 10.1007/s40195-021-01347-6
Previous Articles Next Articles
Fei Peng1,2, Yunbo Xu2(), Xingli Gu2,3
Received:
2021-07-02
Revised:
2021-08-10
Accepted:
2021-08-20
Online:
2022-07-10
Published:
2021-11-24
Contact:
Yunbo Xu
About author:
Yunbo Xu, Yunbo_xu@126.comFei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156.
Add to citation manager EndNote|Ris|BibTeX
Sample | Grain size of parent austenite | |
---|---|---|
Mean value (μm) | Standard error (μm) | |
DQ-820 | 6.83 | 2.87 |
DQ-900-860-820 | 9.87 | 2.09 |
DQ-900-820 | 10.78 | 2.76 |
DQ-900-860 | 16.79 | 5.37 |
DQ-900 | 19.33 | 6.91 |
Table 1 Grain size of parent austenite in different as-quenched samples
Sample | Grain size of parent austenite | |
---|---|---|
Mean value (μm) | Standard error (μm) | |
DQ-820 | 6.83 | 2.87 |
DQ-900-860-820 | 9.87 | 2.09 |
DQ-900-820 | 10.78 | 2.76 |
DQ-900-860 | 16.79 | 5.37 |
DQ-900 | 19.33 | 6.91 |
Fig. 3 a Martensite transformation behavior of different as-quenched sample; b enlarged image of martensite start region in a. Note that the dots in b indicate MS temperatures of different samples
Fig. 6 EBSD results of Q&P samples. The distributions of constituent phases and grain boundaries: a cycle-1 sample; b cycle-3 sample. The distribution of misorientation angle: c cycle-1 sample; d cycle-3 sample. e Comparison of the deviation angle of KS boundary in cycle-1 and cycle-3 samples. Note that dev. indicates deviation and mis. represents misorientation
Fig. 8 Typical TEM micrographs of cycle-3 sample: a lath-type martensite and b corresponding dark filed image of ε carbide, inserted image indicated the diffraction patterns of martensite matrix and ε carbide [25]; c twin martensite with ε carbide precipitation. Note that, the two series of dash lines with parallel directions indicate the habit planes of precipitation
Fig. 9 Element distribution of ε carbide in cycle-3 by STEM + EDX: a bright field image; b HADDF image corresponding to the rectangle in a; c C element; d Mn element; e Si element. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10 Microstructural analysis of cycle-1 sample by a combination of TEM and PED: a TEM bright field image; b virtual bright field image of PED; c phase distribution; d HAGB (> 10°); e IPF of orientation distribution (ND: Normal direction)
Fig. 11 Microstructural analysis of cycle-3 sample by a combination of TEM and PED: a TEM bright field image; b enlarged image of a; c, d and e PED results corresponding to the rectangle in a; c virtual bright field image + grain boundary (> 10°) + twin boundary (red color); d phase distribution; e IPF of orientation distribution (ND: Normal direction)
Fig. 12 Mechanical properties and work hardening behavior of different Q&P samples: a engineering stress-engineering strain curves; b variations of true stress and work hardening rate as a function of true strain
Fig. 13 Comparison of mechanical properties in different Q&P samples. YS, UTS, UEL, TEL, PSE indicate yield strength, ultimate tensile strength, uniform elongation, total elongation, product of UTS and TEL, respectively
[1] |
M.H. Saleh, R. Priestner, J. Mater. Process. Technol. 113, 587 (2001)
DOI URL |
[2] |
G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, B.Z. Bai, Acta Mater. 76, 425 (2014)
DOI URL |
[3] | N. Fonstein (ed.), Advanced High Strength Sheet Steels Physical Metallurgy, Design, Processing, and Properties (Springer, New York, 2015) |
[4] |
B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)
DOI URL |
[5] |
W.S. Li, H.Y. Gao, H. Nakashima, S. Hata, W.H. Tian, Mater. Sci. Eng. A 649,417 (2016)
DOI URL |
[6] |
X.D. Tan, D. Ponge, W.J. Lu, Y.B. Xu, X.L. Yang, X. Rao, D. Wu, D. Raabe, Acta Mater. 165, 561 (2019)
DOI URL |
[7] |
W.N. Zhang, Z.Y. Liu, Z.B. Zhang, G.D. Wang, Mater. Lett. 91, 158 (2013)
DOI URL |
[8] |
N.H. Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 53, 5439 (2005)
DOI URL |
[9] |
X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scr. Mater. 68, 321 (2013)
DOI URL |
[10] |
J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003)
DOI URL |
[11] | D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438,25 (2006) |
[12] |
M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59, 6059 (2011)
DOI URL |
[13] |
R. Ding, D. Tang, A.M. Zhao, H. Guo, J.G. He, C. Zhi, Mater. Des. 87, 640 (2015)
DOI URL |
[14] |
J. Zhang, H. Ding, R.D.K. Misra, C. Wang, Mater. Sci. Eng. A 611,252 (2014)
DOI URL |
[15] | P.F. Gao, W.J. Chen, F. Li, B.J. Ning, Z.Z. Zhao, Acta Metall. Sin. -Engl. Lett. 33, 1657 (2020) |
[16] |
J.N. Zhu, R. Ding, J.G. He, Z.G. Yang, C. Zhang, H. Chen, Scr. Mater. 136, 6 (2017)
DOI URL |
[17] |
R. Ding, D. Tang, A.M. Zhao, Scr. Mater. 88, 21 (2014)
DOI URL |
[18] |
J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, R.D.K. Misra, Mater. Charact. 136, 20 (2017)
DOI URL |
[19] |
N. Nobuo, A. Yusuke, P. Kyo-Son, T. Toshihiro, T. Setsuo, Mater. Sci. Eng. A 553,128 (2012)
DOI URL |
[20] |
M. Tokizane, N. Matsumura, K. Tsuzaki, T. Maki, I. Tamura, Metall. Trans. A 13, 1379 (1982)
DOI URL |
[21] |
F. Peng, Y.B. Xu, X.L. Gu, Y. Wang, X.D. Liu, J.P. Li, Mater. Sci. Eng. A 723,247 (2018)
DOI URL |
[22] |
R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, G.R. Purdy, Acta Mater. 61, 697 (2013)
DOI URL |
[23] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, Oxford, 2004), 2004), pp. 557-615 |
[24] |
F. Peng, Y.B. Xu, D.T. Han, X.L. Gu, J. Mater. Sci. 54, 12116 (2019)
DOI |
[25] |
F. Peng, Y.B. Xu, J.Y. Li, X.L. Gu, X. Wang, Mater. Des. 181, 107921 (2019)
DOI URL |
[26] |
F. Peng, Y.B. Xu, D.T. Han, X.L. Gu, Mater. Des. 183, 108183 (2019)
DOI URL |
[27] |
S. Kajiwara, Metall. Trans. A 17, 1693 (1986)
DOI URL |
[28] |
C. Celada-Casero, J. Sietsma, M.J. Santofimia, Mater. Des. 167, 107625 (2019)
DOI URL |
[29] |
F. Peng, Y.B. Xu, X.L. Gu, Y. Wang, J.P. Li, H. Zhan, Mater. Sci. Eng. A 734,398 (2018)
DOI URL |
[30] |
S. Chen, J. Hu, L.Y. Shan, C.C. Wang, X.M. Zhao, W. Xu, Mater. Sci. Eng. A 803,140706 (2020)
DOI URL |
[31] |
H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54, 1279 (2006)
DOI URL |
[32] |
H.K.D.H. Bhadeshia, J.W. Christian, Metall. Trans. A 21, 767 (1990)
DOI URL |
[33] |
S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52, 2765 (2004)
DOI URL |
[34] |
S.H. Sun, A.M. Zhao, R. Ding, X.G. Li, Acta Metall. Sin. 31, 216 (2018)
DOI URL |
[35] |
G.R. Speich, W.C. Leslie, Metall. Trans. 3, 1043 (1972)
DOI URL |
[36] |
H.Y. Li, X.W. Lu, W.J. Li, X.J. Jin, Metall. Mater. Trans. A 41, 1284 (2010)
DOI URL |
[37] |
D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, E. De Moor, Acta Mater. 90, 417 (2015)
DOI URL |
[38] |
J.H. Jang, I.G. Kim, H.K.D.H. Bhadeshia, Scr. Mater. 63, 121 (2010)
DOI URL |
[39] |
F. Peng, Y.B. Xu, D.T. Han, X.L. Gu, J.Y. Li, X. Wang, Mater. Sci. Eng. A 756,248 (2019)
DOI URL |
[40] |
M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 40, 46 (2009)
DOI URL |
[41] | R.M. Wu, W. Li, C.L. Wang, Y. Xiao, L. Wang, X.J. Jin, Acta Metall. Sin. -Engl. Lett. 28, 386 (2015) |
[1] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[2] | Pengfei Gao, Weijian Chen, Feng Li, Beijia Ning, Zhengzhi Zhao. Quasi-Situ Characterization of Deformation in Low-Carbon Steel with Equiaxed and Lamellar Microstructure Treated by the Quenching and Partitioning Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1657-1665. |
[3] | Yong-Han Li, Zhong-Hua Jiang, Zhen-Dan Yang, Jue-Shun Zhu. Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1346-1358. |
[4] | Yang Zhao, Wen-Ting Zhu, Shu Yan, Li-Qing Chen. Effect of Microstructure on Tensile Behavior and Mechanical Stability of Retained Austenite in a Cold-Rolled Al-Containing TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1237-1243. |
[5] | Erfan Abbasi, Quanshun Luo, Dave Owens. Microstructural Characteristics and Mechanical Properties of Low-Alloy, Medium-Carbon Steels After Multiple Tempering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 74-88. |
[6] | Feng Wang, Dong-Sheng Qian, Xiao-Hui Lu. Effect of Prior Cold Deformation on the Stability of Retained Austenite in GCr15 Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 107-115. |
[7] | Shao-Heng Sun, Ai-Min Zhao, Ran Ding, Xiao-Gang Li. Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 216-224. |
[8] | Ming-Hui Cai, Hong-Shou Huang, Hai-Jun Pan, Sheng-Hui Sun, Hua Ding, Peter Hodgson. Microstructure and Tensile Properties of a Nb-Mo Microalloyed 6.5Mn Alloy Processed by Intercritical Annealing and Quenching and Partitioning [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 665-674. |
[9] | Hui-Yan Li,Chao-Fang Dong,Kui Xiao,Xiao-Gang Li,Ping Zhong. Relationship Between Microstructure and Corrosion Behavior of Cr12Ni3Co12Mo4W Ultra-High-Strength Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1064-1072. |
[10] | Ri-Ming Wu, Wei Li, Cheng-Lin Wang, Yi Xiao, Li Wang, Xue-Jun Jin. Stability of Retained Austenite Through a Combined Intercritical Annealing and Quenching and Partitioning (IAQP) Treatment [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 386-393. |
[11] | Yang Zhao, Qiangjun Yan, Liqing Chen, Xiaoyun Yuan. Effect of Isothermal Temperature on Microstructure and Mechanical Properties of High Al–Low Si TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 389-394. |
[12] | Qingguo Hao, Ying Wang, Xiaoshuai Jia, Xunwei Zuo, Nailu Chen, Yonghua Rong. Dynamic Compression Behavior and Microstructure of a Novel Low-Carbon Quenching-Partitioning-Tempering Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 444-451. |
[13] | Chao Wang, Hua Ding, Jun Zhang, Hongyan Wu. Effect of Intercritical Annealing Time on the Microstructures and Tensile Properties of a High Strength TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 457-463. |
[14] | B. R. Shendy, M. N. Yoozbashi, B. Avishan, S. Yazdani. An Investigation on Rotating Bending Fatigue Behavior of Nanostructured Low-Temperature Bainitic Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 233-238. |
[15] | Huifang Lan, Linxiu Du, Na Zhou, Xianghua Liu. Effect of Austempering Route on Microstructural Characterization of Nanobainitic Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 19-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||