Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (11): 1556-1570.DOI: 10.1007/s40195-020-01125-w
Previous Articles Next Articles
Hongduo Wang1,3, Kuaishe Wang1,2(), Wen Wang1,2(
), Yongxin Lu3, Pai Peng1,2, Peng Han1,2, Ke Qiao1,2, Zhihao Liu1,2, Lei Wang3
Received:
2020-04-19
Revised:
2020-06-14
Accepted:
2020-06-18
Online:
2020-11-10
Published:
2020-11-17
Contact:
Kuaishe Wang,Wen Wang
Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Si | Ni | Mo | V | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.167 | 0.284 | 0.162 | 0.004 | 0.001 | 0.001 | 0.004 | 0.021 | 0.010 | Bal |
Table 1 Chemical composition of the Q235 mild steel (wt%)
C | Mn | Si | Ni | Mo | V | Cu | P | S | Fe |
---|---|---|---|---|---|---|---|---|---|
0.167 | 0.284 | 0.162 | 0.004 | 0.001 | 0.001 | 0.004 | 0.021 | 0.010 | Bal |
Fig. 1 a Schematic diagram of the FSW, b dimensions of the stir pin, WD: direction of the welding, TD: transverse direction, ND: normal direction, RD: direction of the rolling of the plate, measured in mm
Fig. 4 Microstructures of the BM (zone 1 in Fig. 3): a OM, b SEM microstructure of the pearlite, c EBSD map, d misorientation angle distribution, e distribution of the recrystallized grains. The yellow indicates the recrystallized grains
Fig. 5 Microstructures of the each zone in the joint, a-e OM microstructures of the HAZRS, TMAZRS, SZ, TMAZAS, and HAZAS (zones 2, 3, 4, 5 and 6 in Fig. 3), f-j SEM microstructures of the pearlite corresponding to the respective zones. The GF refers to the grain boundary ferrite, and the AF refers to the acicular ferrite
Fig. 6 EBSD microstructures in each zone of the joint: a-e HAZRS, TMAZRS, SZ, TMAZAS, and HAZAS, respectively (zones 2, 3, 4, 5 and 6 in Fig. 3). f-h misorientation angle distributions of the TMAZRS, SZ, and TMAZAS, respectively. The misorientation angle of the HAGBs is larger than 15°, and the misorientation angle of the LAGBs is between 2° and 15°, which are marked with the black and white lines, respectively
Fig. 8 Morphologies of the recrystallized grains in a TMAZRS, b SZ, c TMAZAS (zones 3, 4, and 5 in Fig. 3). Yellow indicates the recrystallized grains. The misorientation angle of the HAGBs is larger than 15°, and the misorientation angle of the LAGBs is between 2° and 15°. Black and green lines represent the HAGBs and LAGBs, respectively
Fig. 9 ODF at the cross sections of the φ2 = 0° and φ2 = 45° and the composition of the superimposed ideal shear texture of a body-centered cubic (bcc) metal, a TMAZRS, b SZ, c TMAZAS
Shear component | $\left\{ {hkl} \right\}\left\langle {uvw} \right\rangle$ | Euler angles (deg.) | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
$D_{1}$ | $\left\{ {{{\bar{1}\bar{1}2}}} \right\}\left\langle {111} \right\rangle$ | 54.7/234.7 | 45 | 0 |
144.7/324.7 | 90 | 45 | ||
$D_{2}$ | $\left\{ {{{11\overline{2}}}} \right\}\left\langle {111} \right\rangle$ | 125.3/305.3 | 45 | 0 |
35.3/215.3 | 90 | 45 | ||
$E$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 90 | 35.3 | 45 |
$\overline{E}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 270 | 35.3 | 45 |
$J$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}2} \right\rangle$ | 90/210/330 | 54.7 | 45 |
$\overline{J}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {\overline{1}1\overline{2}} \right\rangle$ | 30/150/270 | 54.7 | 45 |
$F$ | $\left\{ {{110}} \right\}\left\langle {001} \right\rangle$ | 0/180 | 45 | 0 |
90/270 | 90 | 45 |
Table 2 Orientation of the ideal crystallographic in the simple shear deformation of a bcc metal [50]
Shear component | $\left\{ {hkl} \right\}\left\langle {uvw} \right\rangle$ | Euler angles (deg.) | ||
---|---|---|---|---|
φ1 | φ | φ2 | ||
$D_{1}$ | $\left\{ {{{\bar{1}\bar{1}2}}} \right\}\left\langle {111} \right\rangle$ | 54.7/234.7 | 45 | 0 |
144.7/324.7 | 90 | 45 | ||
$D_{2}$ | $\left\{ {{{11\overline{2}}}} \right\}\left\langle {111} \right\rangle$ | 125.3/305.3 | 45 | 0 |
35.3/215.3 | 90 | 45 | ||
$E$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 90 | 35.3 | 45 |
$\overline{E}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {1\overline{1}1} \right\rangle$ | 270 | 35.3 | 45 |
$J$ | $\left\{ {{110}} \right\}\left\langle {1\overline{1}2} \right\rangle$ | 90/210/330 | 54.7 | 45 |
$\overline{J}$ | $\left\{ {{{\overline{1}\overline{1}0}}} \right\}\left\langle {\overline{1}1\overline{2}} \right\rangle$ | 30/150/270 | 54.7 | 45 |
$F$ | $\left\{ {{110}} \right\}\left\langle {001} \right\rangle$ | 0/180 | 45 | 0 |
90/270 | 90 | 45 |
Fig. 10 a Distribution of the microhardness on the joint’s cross section, b microstructure of the bainite, c microstructure underwent the incomplete transformation of the austenite, d distribution of the microhardness at different thicknesses of the joint
Fig. 13 a Position of the fractures of the SZ specimen, b OM microstructure of the position of the fracture, c SEM of the fracture of the SZ specimen. AF acicular ferrite
Fig. 14 a Macro-morphology of the specimens of the face-bending and back-bending of the joint, b bending load-displacement curves of the BM and the joints of the FSW
[1] |
A. De, H.K.D.H. Bhadeshia, T. Debroy, J. Mater. Sci. Technol. 30, 1050(2014)
DOI URL |
[2] | S. Amandeep, G.N. Kanth, Appl. Mech. Mater. 813-814. 486 (2015) |
[3] |
T. Ogawa, Int. J. Mech. Mater. Eng. 10, 1(2015)
DOI URL |
[4] |
A.G. Osorio, D. Souza, T. Passos, L. Dalpiaz, T. Aires, J. Mater. Process. Technol. 266, 46(2018)
DOI URL |
[5] |
Y. Sun, H. Fujii, H. Imai, K. Kondoh, Corros. Sci. 94, 88(2015)
DOI URL |
[6] |
Y. Azuma, Y. Kameno, T. Takasugi, Weld. Int. 27, 929(2013)
DOI URL |
[7] |
S.A. Khodir, Y. Morisada, R. Ueji, H. Fujii, Mater. Sci. Eng. A 558, 572 (2012)
DOI URL |
[8] |
H.D. Wang, K.S. Wang, W. Wang, L.Y. Huang, P. Peng, H.L. Yu, Mater. Charact. 155, 109803(2019)
DOI URL |
[9] | W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-smith, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978·8 and US Patent Application No. 5,460, 317(1991) |
[10] | W.M. Thomas, C.J. Dawes, Weld. J., 75, 41(1996) |
[11] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)
DOI URL |
[12] | Z.K. Shen, Y.Q. Ding, A.P. Gerlich, Crit. Rev. Solid State Mater. Sci. 2019. https://doi.org/10.1080/10408 436.2019.1671799 |
[13] |
H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, J.Z. Li, Mater. Des. 118, 207(2017)
DOI URL |
[14] |
Y.X. Huang, Y.M. Xie, X.C. Meng, J.C. Li, L. Zhou, J. Mater. Sci. Technol. 35, 1261(2019)
DOI URL |
[15] |
M. Guan, Y.H. Wang, Y.X. Huang, X. Liu, X.C. Meng, Y.M. Xie, J.C. Li, Mater. Lett. 255, 126506(2019)
DOI URL |
[16] |
H.J. Jiang, B. Zhang, C.Y. Liu, Z.X. Yang, Acta Metall. Sin. (Engl. Lett.) 32, 1135(2019)
DOI URL |
[17] |
W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. (Engl. Lett.) 33, 43(2020)
DOI URL |
[18] |
Y.F. Wang, J. An, K. Yin, M.S. Wang, Y.S. Li, C.X. Huang, Acta Metall. Sin. (Engl. Lett.) 31, 878(2018)
DOI URL |
[19] | D. Lohwasser, Z. Chen(eds.), Friction Stir Welding: From Basics to Applications (Elsevier, Amsterdam, 2010) |
[20] | L.E. Murrr, Y. Li, E. Trillo, J.C.M. Clure, Mater. Technol. 15, 37(2000) |
[21] |
G.P. Dinda, A. Ramakrishnan, Int. J. Adv. Manuf. Technol. 103, 4763(2019)
DOI URL |
[22] |
X.C. Liu, Y.F. Sun, T. Nagira, H. Fujii, Mater. Charact. 137, 24(2018)
DOI URL |
[23] |
H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Mater. Sci. Eng. A 429, 50 (2006)
DOI URL |
[24] |
Y.J. Li, R.D. Fu, Y. Li, Y. Peng, H.J. Liu, J. Mater. Sci. Technol. 34, 157(2018)
DOI URL |
[25] |
Z.W. Wang, G.M. Xie, D. Wang, H. Zhang, D.R. Ni, P. Xue, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin. (Engl. Lett.) 33, 58(2020)
DOI URL |
[26] |
K. Kitamura, H. Fujii, Y. Iwata, Y.S. Sun, Y. Morisada, Mater. Des. 46, 348(2013)
DOI URL |
[27] |
Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Mater. Sci Eng. A 485, 448 (2008)
DOI URL |
[28] |
M.M.Z. Ahmed, B.P. Wynne, J.P. Martin, Sci. Technol. Weld. Join. 18, 680(2013)
DOI URL |
[29] |
S.M. Mousavizade, M. Pouranvari, F.M. Ghaini, H. Fujii, Y.F. Sun, J. Alloys Compd. 685, 806(2016)
DOI URL |
[30] | Z. Iqbal, A. Bazoune, F.A. Badour, A. Shuaib, N. Merah, Arabian. J. Sci.Eng. 44, 1233(2019) |
[31] |
L. Zhou, R.X. Zhang, H.F. Yang, Y.X. Huang, X.G. Song, J. Mater. Eng. Perform. 27, 6709(2018)
DOI URL |
[32] |
MdM Husain, R. Sarkar, T.K. Pal, M. Ghosh, N. Prabhu, J. Mater. Eng. Perform., 26, 2047(2017)
DOI URL |
[33] | J. Trzaska, L.A. Dobrza’nski, J. Mater. Process. Technol. 192-193, 504(2007) |
[34] | ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, USA, (2013) |
[35] | British Standards Institution Destructive tests on welds in metallic materials -bend tests. BS EN ISO 5173+A1, London,, (2011) |
[36] |
N. Carbajal, F. Mujika, Polym. Test. 28, 150(2009)
DOI URL |
[37] |
G.R. Argade, S. Shukla, K. Liu, R.S. Mishra, J. Mater. Process. Technol. 259, 259(2018)
DOI URL |
[38] | F. Borrato, R. Barbosa, S. Yue, J.J Jonas, Thermec-881, 383 (1988) |
[39] |
H.H. Cho, S.H. Kang, S.H. Kim, K.H. Oh, H.J. Kim, W.S. Chang, H.N. Han, Mater. Des. 34, 258(2012)
DOI URL |
[40] |
G.M. Xie, R.H. Duan, P. Xue, Z.Y. Ma, H.L. Liu, Z.A. Luo, Acta Metall. Sin. (Engl. Lett.), 33, 88(2020)
DOI URL |
[41] |
Z.A. Zakaria, K.N.M. Hasan, M.F.A. Razak, Key. Eng. Mater. 740, 155(2017)
DOI URL |
[42] |
M. Imam, R. Ueji, H. Fujii, Mater. Sci. Eng. A 636, 24 (2015)
DOI URL |
[43] |
A.F. Gourgues, H.M. Flower, T.C. Lindley, J. Mater. Sci. Technol. 16, 26(2000)
DOI URL |
[44] |
P. Xue, Z.Y. Ma, Y. Komizo, H. Fujii, Mater. Lett. 162, 161(2016)
DOI URL |
[45] |
T.F.A. Santos, E.A.T.L. Opez, E.B. Fonseca, A.J. Ramirez, Mater. Res. 19, 117(2016)
DOI URL |
[46] |
H. Fujii, L. Cui, K. Nakata, K. Nogi, Weld. World. 52, 75(2013)
DOI URL |
[47] | S. Rahimi, T. Konkova, I. Violatos, T.N. Baker, Metall. Mater. Trans. A 50, 644 (2019) |
[48] |
T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi, H. Assadi, Mater. Sci. Eng. A 527, 6484 (2010)
DOI URL |
[49] |
S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Mater. Des. 76, 130(2015)
DOI URL |
[50] | R.W. Fonda, K.E. Knipling, Sci. Technol. Weld.Join. 16, 288(2011) |
[51] |
P. Xue, W.D. Li, D. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 670, 153 (2016)
DOI URL |
[52] |
A.M.E. Batahgy, T. Miura, R. Ueji, H. Fujii, Mater. Sci. Eng. A 651, 904 (2016)
DOI URL |
[53] |
G.M. Xie, H.B. Cui, Z.A. Luo, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 704, 401 (2017)
DOI URL |
[54] |
D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, G. Purcek, J. Mater. Sci. Technol. 34, 237(2018)
DOI URL |
[55] |
D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek, Z.Y. Ma, Mater. Sci. Eng. A 642, 57 (2015)
DOI URL |
[56] |
D.M. Sekban, S.M. Aktarer, G. Purcek, Metall. Mater. Trans. A 50, 4127 (2019)
DOI URL |
[1] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[2] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[3] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[4] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[5] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[6] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[7] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[8] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[9] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[10] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[11] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[12] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[13] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[14] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[15] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||