Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 485-494.DOI: 10.1007/s40195-020-01156-3
Previous Articles Next Articles
Shiwei Ci1,2, Jingjing Liang1,3(), Jinguo Li1,3, Haiwei Wang1,2, Yizhou Zhou1, Xiaofeng Sun1, Hongwei Zhang1,4, Yutian Ding5, Xin Zhou6(
)
Received:
2020-07-08
Revised:
2020-08-26
Accepted:
2020-08-31
Online:
2021-04-10
Published:
2021-03-30
Contact:
Jingjing Liang,Xin Zhou
About author:
Yizhou Zhou, yzzhou@imr.ac.cnShiwei Ci, Jingjing Liang, Jinguo Li, Haiwei Wang, Yizhou Zhou, Xiaofeng Sun, Hongwei Zhang, Yutian Ding, Xin Zhou. Prediction of Primary Dendrite Arm Spacing in Pulsed Laser Surface Melted Single Crystal Superalloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 485-494.
Add to citation manager EndNote|Ris|BibTeX
No | t, s | P, W | Pt, J | ${D}_{\mathrm{b}}$, μm | ${D}_{\mathrm{c}}$, μm | ${D}_{\mathrm{m}}$, μm | ${\lambda }_{1}$, μm |
---|---|---|---|---|---|---|---|
A | 0.1 | 1800 | 180 | 2200 | 1416 | 1399 | 3.2±0.45 |
B | 0.1 | 2200 | 220 | 2200 | 1857 | 1902 | 3.7±0.45 |
C | 0.1 | 2600 | 260 | 2200 | 2054 | 2305 | 4.3±0.50 |
D | 0.16 | 1800 | 288 | 2200 | 1712 | 2145 | 4.3±0.55 |
E | 0.16 | 2200 | 352 | 2200 | 2020 | 2353 | 4.6±0.65 |
F | 0.16 | 2600 | 416 | 2200 | 2159 | 2558 | 5.8±0.75 |
G | 0.22 | 1800 | 396 | 2200 | 1853 | 2405 | 4.8±0.60 |
H | 0.22 | 2200 | 484 | 2200 | 2102 | 2564 | 5.2±0.65 |
I | 0.22 | 2600 | 572 | 2200 | 2205 | 2743 | 6.0±0.75 |
J | 0.28 | 1800 | 504 | 2200 | 1936 | 2376 | 5.6±0.65 |
K | 0.28 | 2200 | 616 | 2200 | 2149 | 2678 | 6.0±0.70 |
L | 0.28 | 2600 | 728 | 2200 | 2242 | 2827 | 6.9±0.75 |
Table 1 Processing parameters (laser power, P, pulse width, t and beam diameter, ${D}_{\mathrm{b}}$) and the corresponding calculated and measured diameters of molten pool,${D}_{\mathrm{c}}$ and ${D}_{\mathrm{m}}$, and primary dendritic arm spacing, ${\lambda }_{1}$
No | t, s | P, W | Pt, J | ${D}_{\mathrm{b}}$, μm | ${D}_{\mathrm{c}}$, μm | ${D}_{\mathrm{m}}$, μm | ${\lambda }_{1}$, μm |
---|---|---|---|---|---|---|---|
A | 0.1 | 1800 | 180 | 2200 | 1416 | 1399 | 3.2±0.45 |
B | 0.1 | 2200 | 220 | 2200 | 1857 | 1902 | 3.7±0.45 |
C | 0.1 | 2600 | 260 | 2200 | 2054 | 2305 | 4.3±0.50 |
D | 0.16 | 1800 | 288 | 2200 | 1712 | 2145 | 4.3±0.55 |
E | 0.16 | 2200 | 352 | 2200 | 2020 | 2353 | 4.6±0.65 |
F | 0.16 | 2600 | 416 | 2200 | 2159 | 2558 | 5.8±0.75 |
G | 0.22 | 1800 | 396 | 2200 | 1853 | 2405 | 4.8±0.60 |
H | 0.22 | 2200 | 484 | 2200 | 2102 | 2564 | 5.2±0.65 |
I | 0.22 | 2600 | 572 | 2200 | 2205 | 2743 | 6.0±0.75 |
J | 0.28 | 1800 | 504 | 2200 | 1936 | 2376 | 5.6±0.65 |
K | 0.28 | 2200 | 616 | 2200 | 2149 | 2678 | 6.0±0.70 |
L | 0.28 | 2600 | 728 | 2200 | 2242 | 2827 | 6.9±0.75 |
C | Cr | Co | W | Mo | Al | Nb | Ta | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
0.12-0.18 | 4.30-5.60 | 8.00-10.00 | 7.70-9.50 | 0.80-1.40 | 5.60-6.30 | 1.40-1.80 | 3.50-4.50 | 3.50-4.50 | Bal |
Table 2 Main chemical composition of DD32 alloy (mass fraction, %)
C | Cr | Co | W | Mo | Al | Nb | Ta | Re | Ni |
---|---|---|---|---|---|---|---|---|---|
0.12-0.18 | 4.30-5.60 | 8.00-10.00 | 7.70-9.50 | 0.80-1.40 | 5.60-6.30 | 1.40-1.80 | 3.50-4.50 | 3.50-4.50 | Bal |
Properties | Values |
---|---|
Melting point of pure Ni, ${T}_{\mathrm{m}}$ | 1726 (K) |
Solidification interval, $\Delta {T}_{0}$ | 39.3 (K) |
Absorption coefficient, $\eta$ | 0.12 |
Emissivity, $\varepsilon$ | 0.7 |
Ambient temperature, ${\mathrm{T}}_{0}$ | 293.15 (K) |
Partition coefficient, ${k}_{0}$ | 0.62 |
Gibbs-Thomson coefficient, $\Gamma$ | 1.8 × 10-7 (m k) |
Liquid diffusivity, D | 3 × 10-9 (m2/s) |
Solid density, ${\rho }_{\mathrm{S}}$ | 8550 (kg/m3) |
Liquid density, ${\rho }_{\mathrm{L}}$ | 8550 (kg/m3) |
Solidus temperature, ${T}_{\mathrm{s}}$ | 1621.7 (K) |
Liquidus temperature, ${T}_{\mathrm{l}}$ | 1661 (K) |
Solid specific heat, ${Cp}_{\mathrm{S}}$ | 550 (J kg-1 k-1) |
Liquid specific heat, ${Cp}_{\mathrm{l}}$ | 550 (J kg-1 k-1) |
Solid thermal conductivity, ${k}_{\mathrm{S}}$ | 22 (W m-1 K-1) |
Liquid thermal conductivity $, {k}_{\mathrm{l}}$ | 22 (W m-1 K-1) |
Table 3 Thermophysical properties of the DD32 SC alloy used for calculation of PDAS
Properties | Values |
---|---|
Melting point of pure Ni, ${T}_{\mathrm{m}}$ | 1726 (K) |
Solidification interval, $\Delta {T}_{0}$ | 39.3 (K) |
Absorption coefficient, $\eta$ | 0.12 |
Emissivity, $\varepsilon$ | 0.7 |
Ambient temperature, ${\mathrm{T}}_{0}$ | 293.15 (K) |
Partition coefficient, ${k}_{0}$ | 0.62 |
Gibbs-Thomson coefficient, $\Gamma$ | 1.8 × 10-7 (m k) |
Liquid diffusivity, D | 3 × 10-9 (m2/s) |
Solid density, ${\rho }_{\mathrm{S}}$ | 8550 (kg/m3) |
Liquid density, ${\rho }_{\mathrm{L}}$ | 8550 (kg/m3) |
Solidus temperature, ${T}_{\mathrm{s}}$ | 1621.7 (K) |
Liquidus temperature, ${T}_{\mathrm{l}}$ | 1661 (K) |
Solid specific heat, ${Cp}_{\mathrm{S}}$ | 550 (J kg-1 k-1) |
Liquid specific heat, ${Cp}_{\mathrm{l}}$ | 550 (J kg-1 k-1) |
Solid thermal conductivity, ${k}_{\mathrm{S}}$ | 22 (W m-1 K-1) |
Liquid thermal conductivity $, {k}_{\mathrm{l}}$ | 22 (W m-1 K-1) |
Fig. 2 Solidification microstructure of the cross section of the molten pool. The green dotted line is the dividing line between different growth directions. The area between the red dotted lines in the orange magnification area is planar interface
Fig. 3 Evolution of the ${G}_{\left[001\right]}$ and ${V}_{\left[001\right]}$ with the increase of Z at the S/L interface of the center position of the molten pool under the condition of 2600 W, 0.1 s
Fig. 4 Combined effects of P, t and two characteristic solidification conditions on the PDAS (in μm): a evaluated by using the $\overline{{G}^{-0.5}{V}^{-0.25}}$, b evaluated by using the ${\bar{G}}^{-0.5}{\bar{V}}^{-0.25}$
Fig. 10 Contour maps showing the influences of laser power, P, and pulse width, t, on the (a) $\overline{G}$ (K/m) and (b) $\overline{V}$ (m/s) values
[1] | L. Chen, Y. He, Y. Yang, S. Niu, H. Ren, Int. J. Adv. Manuf. Tech. 89 3651 (2016 |
[2] | H.J. Zhang, H.U. Guo-Qing, W.Y. Liu, Z.H. Lin, Machinery 6, 1 (2004) |
[3] |
E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74 401 (2015)
DOI URL |
[4] |
M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, W. Kurz, Mater. Sci. Eng. A 271 232 (1999)
DOI URL |
[5] |
Y.J. Liang, X. Cheng, H.M. Wang, Acta Mater. 118 17 (2016)
DOI URL |
[6] | C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, G. Eggeler, Metall. Mater. Trans. A 49 3781 (2018 |
[7] | M. Gäumann, Dissertation, EPFL, 1999. |
[8] |
G.W. Wang, J.J. Liang, Y.Z. Zhou, L.B. Zhao, T. Jin, X.F. Sun, J Mater Sci Technol 34 732 (2018)
DOI URL |
[9] | W. Kurz, Solidification microstructure processing maps: Theory and application. Adv. Eng. Mater. 3 443 (2001) |
[10] |
L. Wang, N. Wang, Acta Mater. 104 250 (2016)
DOI URL |
[11] |
G.W. Wang, J.J. Liang, Y.Z. Zhou, T. Jin, X.F. Sun, Z.Q. Hu, Acta Metall. Sin-Engl. 29 763 (2016)
DOI URL |
[12] | G.W. Wang, J.J. Liang, Y.H. Yang, Y. Shi, Y.Z. Zhou, T. Jin, X.F. Sun, J. Mater. Sci. Technol. 34 1315 (2018 |
[13] | M. Huang, G. Zhang, D. Wang, J.S. Dong, L. Wang, L.H. Lou, Acta Metall. Sin.-Engl. Lett. 31 887 (2018) |
[14] |
G.W. Wang, J.J. Liang, Y.Z. Zhou, T. Jin, X.F. Sun, Z.Q. Hu, J. Mater. Sci. Technol. 33 499 (2017)
DOI URL |
[15] |
Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des. 130 197 (2017)
DOI URL |
[16] |
Y.J. Liang, H.M. Wang, Mater. Des. 102 297 (2016)
DOI URL |
[17] | M. Gäumann, C. Bezençon, P. Canalis, W. Kurz, Acta Mater. 49 1051 (2001 |
[18] |
L. Liu, T.W. Huang, J. Zhang, H.Z. Fu, Mater. Lett. 61 227 (2007)
DOI URL |
[19] | W. Kurz, D. Fisher, Fundamentals of Solidification (Trans Tech Publications, Switzerland, 1989) |
[20] |
S.Z. Lu, J.D. Hunt, J. Cryst. Growth 123 17 (1992)
DOI URL |
[21] |
T. Okamoto, K. Kishitake, J. Cryst. Growth 29 137 (1975)
DOI URL |
[22] |
J.D. Hunt, S.Z. Lu, Metall. Mater. Trans. A 27 611 (1996)
DOI URL |
[23] | R. Trivedi, Mater. Trans. 15 977 (1984) |
[24] | J.D. Hunt, Solidification and Casting of Metals (The Metal Society, London, 1979), pp. 3-9 |
[25] |
W. Kurz, D.J. Fisher, Acta Metall. 29 11 (1981)
DOI URL |
[26] | D. Ma, P.R. Sahm, Metall. Mater. Trans. A. 29 1113 (1998 |
[27] |
J.E. Spinelli, D.A. Rosa, I.L. Ferreira, A. Garcia, Mat. Sci. Eng. A 383 271 (2004)
DOI URL |
[28] |
J.E. Spinelli, O.F.L. Rocha, A. Garcia, Mater. Res. 9 51 (2006)
DOI URL |
[29] |
Y.J. Liang, A. Li, X. Cheng, X.T. Pang, H.M. Wang, J. Alloys Compd. 688 133 (2016)
DOI URL |
[30] |
C. Yang, Q. Xu, B. Liu, J. Mater. Sci. 53 9755 (2018
URL PMID |
[31] |
D.T.J. Hurle, Solid-State Electron. 3 37 (1961)
DOI URL |
[32] | S.H. Han, R. Trivedi, Acta Metall. Mater. 42 25 (1994) |
[33] | R. Acharya, R. Bansal, J.J. Gambone, S. Das, Metall. Mater. Trans. B 45 2279 (2014 |
[34] | H.S. Whitesell, L. Li, R.A. Overfelt, Metall. Mater. Trans. B 31 546 (2000) |
[35] | A. Wagner, B.A. Shollock, M. McLean, Mater. Sci. Eng. A. 374 270 (2004) |
[36] | J.M. Drezet, S. Pellerin, C. Bezencon, S. Mokadem, J. Phys. Iv. 120 299 (2004) |
[37] |
Z.T. Gan, H. Liu, S.X. Li, X.L. He, G. Yu, J. Heat Mass Tran. 111 709 (2017)
DOI URL |
[38] |
T. Duffar, M.D. Serrano, L. Lerin, J.L. Santailler, Cryst. Res. Technol. 34 457 (1999)
DOI URL |
[1] | Zihao Tan, Lin Yang, Xinguang Wang, Yunling Du, Lihua Ye, Guichen Hou, Yanhong Yang, Jinlai Liu, Jide Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. |
[2] | Guercio Giuseppe Del, Manuela Galati, Abdollah Saboori, Paolo Fino, Luca Iuliano. Microstructure and Mechanical Performance of Ti-6Al-4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 183-203. |
[3] | Jiahua Zhang, Yi Yang, Sheng Cao, Zhiqiang Cao, Dmytro Kovalchuk, Songquan Wu, Enquan Liang, Xi Zhang, Wei Chen, Fan Wu, Aijun Huang. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1311-1320. |
[4] | Wen Wang, Peng Han, Pai Peng, Ting Zhang, Qiang Liu, Sheng-Nan Yuan, Li-Ying Huang, Hai-Liang Yu, Ke Qiao, Kuai-She Wang. Friction Stir Processing of Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 43-57. |
[5] | Zhao Zhang, Zhi-Jun Tan, Jian-Yu Li, Yu-Fei Zu, Jian-Jun Sha. Integrated Modeling of Process-Microstructure-Property Relations in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 75-87. |
[6] | Li Jun-Lei, Wang Shuai, Cao Fang, Lin Xiao, Wei Xiao-Wei, Zhao Zhen-Hua, Dou Xiao-Jie, Yu Wei-Ting, Yang Ke, Zhao De-Wei. Fabrication and Characterization of Nanopillar-Like HA Coating on Porous Ti6Al4V Scaffold by a Combination of Alkali-Acid-Heat and Hydrothermal Treatments [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1075-1088. |
[7] | Hui Wang, Cheng Lu, Kiet Tieu, Yu Liu, Rui Wang, Jintao Li. Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 452-460. |
[8] | Min Huang, Gong Zhang, Dong Wang, Jia-Sheng Dong, Li Wang, Lang-Hong Lou. Microstructure and Stress-Rupture Property of Large-Scale Complex Nickel-Based Single Crystal Casting [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 887-896. |
[9] | Zhong-Jiao Zhou,Da-Qian Yu,Li Wang,Lang-Hong Lou. Effect of Skew Angle of Holes on the Thermal Fatigue Behavior of a Ni-based Single Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 185-192. |
[10] | Hong-Min Jia, Xiao-Hui Feng, Yuan-Sheng Yang. Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1185-1191. |
[11] | Guo-Wei Wang,Jing-Jing Liang,Yi-Zhou Zhou,Tao Jin,Xiao-Feng Sun,Zhuang-Qi Hu. Effects of Substrate Crystallographic Orientations on Microstructure in Laser Surface-Melted Single-Crystal Superalloy: Theoretical Analysis [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 763-773. |
[12] | Honggang QI, Yafang GUO, Xiaozhi TANG, Shuang XU. Atomistic simulation of the structural evolution in magnesium single crystal under c-axis tension [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(6): 487-494. |
[13] | Yuli GU, Yuhuai HE, Shiyu QU, Guodong ZHANG, Fei ZHENG and Chunhu TAO. Thermo-mechanical fatigue behavior of nickel-base powder metallurgy superalloy FGH96 under tension-tension loading [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(2): 147-153. |
[14] | Hongmin PEN,Qingshun BAI,Yingchun LIANG,Mingjun CHEN. Multiscale simulation of nanometric cutting of single crystal copper---effect of different cutting speeds [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 440-446. |
[15] | Haipeng JIN,Jiarong LI,Dong PAN. Application of inverse method to estimation of boundary conditions during investment casting simulation [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(6): 429-434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||