Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (10): 1238-1246.DOI: 10.1007/s40195-015-0318-5
• Orginal Article • Previous Articles Next Articles
Zhi-Xin Xia1(), Chuan-Yang Wang2, Yan-Fen Zhao3, Guo-Dong Zhang3, Lu Zhang3, Xin-Ming Meng3
Received:
2015-06-25
Revised:
2015-08-13
Online:
2015-09-25
Published:
2015-10-20
Zhi-Xin Xia, Chuan-Yang Wang, Yan-Fen Zhao, Guo-Dong Zhang, Lu Zhang, Xin-Ming Meng. Laves Phase Formation and Its Effect on Mechanical Properties in P91 Steel[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1238-1246.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Finite element analysis of operated stress in the T-junction: a size of the T-junction, b finite element mesh model, c load and boundary conditions, d counter plot of von Mises stress
Specimen | C | Si | Mn | V | Cr | Mo | Nb | S | P | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 0.12 | 0.30 | 0.44 | 0.20 | 8.62 | 0.93 | 0.06 | 0.003 | 0.017 | 0.044 | Bal. |
B | 0.11 | 0.27 | 0.43 | 0.21 | 8.41 | 0.92 | 0.06 | 0.003 | 0.017 | 0.047 | Bal. |
Table 1 Chemical composition of different specimens in the tee (in wt%)
Specimen | C | Si | Mn | V | Cr | Mo | Nb | S | P | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 0.12 | 0.30 | 0.44 | 0.20 | 8.62 | 0.93 | 0.06 | 0.003 | 0.017 | 0.044 | Bal. |
B | 0.11 | 0.27 | 0.43 | 0.21 | 8.41 | 0.92 | 0.06 | 0.003 | 0.017 | 0.047 | Bal. |
Fig. 2 Equilibrium phase diagrams of P91 steel calculated by Thermo-Calc software with database SSOL5: a 9Cr-1Mo, b Mo concentration-temperature, c 9Cr-2Mo
Specimen | Yield strength (MPa) | Tensile strength (MPa) | Yield strength at 849 K (MPa) | Tensile strength at 849 K (MPa) | Impact energy at longitude (J) | Impact energy at transverse (J) |
---|---|---|---|---|---|---|
A | 380 | 610 | 240 | 290 | 35 | 23 |
B | 450 | 650 | 290 | 320 | 91 | 73 |
Original pipe | 505 | 660 | 335 | 370 | 212 | 165 |
Table 2 Mechanical properties of the tee and original pipe
Specimen | Yield strength (MPa) | Tensile strength (MPa) | Yield strength at 849 K (MPa) | Tensile strength at 849 K (MPa) | Impact energy at longitude (J) | Impact energy at transverse (J) |
---|---|---|---|---|---|---|
A | 380 | 610 | 240 | 290 | 35 | 23 |
B | 450 | 650 | 290 | 320 | 91 | 73 |
Original pipe | 505 | 660 | 335 | 370 | 212 | 165 |
Crack initiation energy (J) | Crack growth energy (J) | Ratio of the crack initiation energy to impacting absorption energy (%) | |
---|---|---|---|
Transverse of specimen A | 13.5 | 8.5 | 61.4 |
Longitude of specimen A | 28.7 | 5.5 | 83.2 |
Transverse of specimen B | 45.7 | 49.6 | 47.9 |
Longitude of specimen B | 59.9 | 51.8 | 53.6 |
Table 3 Impact absorbing energy during the process of the fracture in both specimens
Crack initiation energy (J) | Crack growth energy (J) | Ratio of the crack initiation energy to impacting absorption energy (%) | |
---|---|---|---|
Transverse of specimen A | 13.5 | 8.5 | 61.4 |
Longitude of specimen A | 28.7 | 5.5 | 83.2 |
Transverse of specimen B | 45.7 | 49.6 | 47.9 |
Longitude of specimen B | 59.9 | 51.8 | 53.6 |
Specimen | Phases | C | Si | Cr | Mo | Fe |
---|---|---|---|---|---|---|
A | Laves | - | 3.17 | 10.45 | 41.28 | 45.1 |
M23C6 | 8.86 | - | 59.57 | 6.92 | 24.65 | |
B | Laves | - | 3.22 | 9.91 | 41.75 | 45.12 |
M23C6 | 6.26 | - | 52.32 | 8.01 | 33.41 | |
Thermo-Calc | Laves | - | - | 1.19 | 45.45 | 53.36 |
M23C6 | 5.14 | - | 70.82 | 20.40 | 3.64 |
Table 4 Chemical composition of different specimens in different phases (wt%)
Specimen | Phases | C | Si | Cr | Mo | Fe |
---|---|---|---|---|---|---|
A | Laves | - | 3.17 | 10.45 | 41.28 | 45.1 |
M23C6 | 8.86 | - | 59.57 | 6.92 | 24.65 | |
B | Laves | - | 3.22 | 9.91 | 41.75 | 45.12 |
M23C6 | 6.26 | - | 52.32 | 8.01 | 33.41 | |
Thermo-Calc | Laves | - | - | 1.19 | 45.45 | 53.36 |
M23C6 | 5.14 | - | 70.82 | 20.40 | 3.64 |
Fig. 7 SEM images of impact fracture surfaces in the both specimens: a crack initiation zone and c crack growth zone in the specimen A; b crack initiation zone and d crack growth zone in the specimen B
[1] | F. Abe, Mater. Sci. Eng., A 319, 770 (2001) |
[2] | P.J. Ennis, A. Zielinska-Lipec, O. Wachter, A. Czyrska-Filemonowicz, Acta Mater. 45, 4901(1997) |
[3] | F. Abe, H. Araki, T. Noda, Metall. Trans. A 22, 2225 (1991) |
[4] | Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Mater. Sci. Eng., A 528, 657 (2010) |
[5] | O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics 32, 362 (2013) |
[6] | A. Mahmoudi, M.R. Mater. Charact. 62, 976(2011) |
[7] | A. Kipelova, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng., A 532, 71 (2012) |
[8] | J.S. Lee, H.G. Armaki, K. Maruyama, H. Asahi, Mater. Sci. Eng., A 428, 270 (2006) |
[9] | V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider, R. Agamennone, ISIJ Int. 12, 1505(2002) |
[10] | G. Dimmlera, P. Weinert, E. Kozeschnik, H. Cerjak, Mater. Charact. 51, 341(2003) |
[11] | B.A. Senior, Mater. Sci. Eng., A 119, 5 (1989) |
[12] | P.J. Ennis, C. Filemonowicz, Sadhana 28, 709 (2003) |
[13] | Y. Tsuchida, K. Okamoto, Y. Tokunaga, ISIJ Int. 35, 317(1995) |
[14] | H.J. Zhang, S.T. Liu, C.X. Fan, Electr. Power 40, 12 (2007) |
[15] | J.H. Baek, S.H. Kim, C.B. Lee, D.H. Hahn, Met. Mater. Int. 15, 565(2009) |
[16] | W.S. Ryu, S.H. Kim, Trans. Indian Inst. Met. 63, 111(2010) |
[17] | Z.X. Xia, C. Zhang, Z.G. Yang, Mater. Sci. Eng., A 528, 6764 (2011) |
[18] | Y. Hosoi, N. Wade, S. Kunimitsu, T. Urita, J. Nucl. Mater. 141, 461(1986) |
[19] | M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte, P.P. Choi, D. Raabe, G. Eggeler, Acta Mater. 90, 94(2015) |
[20] | Z.X. Xia, C. Zhang, Z.Y. Yang, Mater. Sci. Technol. 27, 282(2011) |
[21] | J. Cui, I.S. Kim, C.Y. Kang, K. Miyahara, ISIJ Int. 41, 368(2001) |
[22] | F.R. Larson, J. Miller, Trans. ASME 74, 756 (1952) |
[23] | R.L. Orr, O.D. Sherby, J.E. Dorn, Trans. ASM 46, 113 (1954) |
[24] | Z.X. Xia, C. Zhang, N.Q. Fan, Y.F. Zhao, F. Xue, S.J. Liu, Mater. Sci. Eng., A 545, 91 (2012) |
[25] | Y. Tomita, J. Mater. Sci. 26, 35(1991) |
[1] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[2] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[3] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[4] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[5] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[6] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[7] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[8] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[9] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
[10] | Chang-Zhen Zhang, Chen-Dong Shao, Hai-Chao Cui, Hua-Li Xu, Feng-Gui Lu. Characterization of Multi-layer Weld Metal and Creep-Rupture Behavior of Modified 10Cr-1Mo Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 808-820. |
[11] | Yongkui Li, Jianxin Lou, Hongtao Ju, Li Lin. Impact Toughness of Heat-Affected Zones of 11Cr Heat-Resistant Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 821-827. |
[12] | Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 716-730. |
[13] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[14] | Tao Xiao, Xiao-Fei Sheng, Qian Lei, Jia-Lun Zhu, Sheng-Yao Li, Ze-Ru Liu, Zhou Li. Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 375-384. |
[15] | Xuyang Wang, Jieren Yang, Rui Hu, Zitong Gao, Jinguang Li, Hengzhi Fu. Creep-Induced Phase Instability and Microstructure Evolution of a Nearly Lamellar Ti-45Al-8.5Nb-(W, B, Y) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1591-1600. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||