Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (1): 37-46.DOI: 10.1007/s40195-013-0012-4
• research-article • Previous Articles Next Articles
M. Yadav1(), Debasis Behera1, R. R. Sinha1, P. N. Yadav2
Received:
2013-06-10
Revised:
2013-08-04
Online:
2014-02-25
Published:
2014-03-11
M. Yadav, Debasis Behera, R. R. Sinha, P. N. Yadav. Experimental and Quantum Studies on Adsorption and Corrosion Inhibition Effect on Mild Steel in Hydrochloric Acid by Thiophene Derivatives[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 37-46.
Add to citation manager EndNote|Ris|BibTeX
Inhibitor | Conc. ppm | Weight loss data | Tafel extrapolation data | Impedance data | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CR (mm/y) | η (%) | Ecorr (mV) | ba (mV/dec) | bc (mV/dec) | Icorr (μA/cm2) | η (%) | Rct (Ω cm2) | Cdl (μF/cm2) | η (%) | ||
Blank | – | 18.20 | – | -502 | 334 | 312 | 6126 | – | 5.0 | 831.5 | – |
Inh I | 20 | 6.57 | 63.5 | -492 | 286 | 305 | 2156 | 64.8 | 14.4 | 513.9 | 65.3 |
50 | 4.07 | 77.4 | -491 | 254 | 287 | 1242 | 79.7 | 22.6 | 327.4 | 77.2 | |
100 | 3.29 | 81.7 | -494 | 242 | 278 | 1074 | 82.5 | 33.0 | 224.2 | 84.8 | |
150 | 1.78 | 90.1 | -486 | 234 | 256 | 465 | 92.4 | 47.5 | 128.3 | 89.3 | |
200 | 1.51 | 91.6 | -484 | 232 | 246 | 325 | 94.7 | 64.5 | 108.5 | 92.1 | |
250 | 0.99 | 94.5 | -482 | 215 | 252 | 146 | 97.6 | 127.1 | 70.35 | 96.0 | |
Inh II | 20 | 7.08 | 60.7 | -492 | 266 | 292 | 2292 | 62.6 | 14.0 | 278.2 | 64.3 |
50 | 4.25 | 76.4 | -488 | 227 | 266 | 1352 | 77.9 | 21.8 | 244.7 | 77.1 | |
100 | 3.67 | 79.6 | -487 | 224 | 258 | 1140 | 81.4 | 27.8 | 231.1 | 82.0 | |
150 | 2.55 | 85.8 | -493 | 218 | 254 | 696 | 88.6 | 32.0 | 219.1 | 84.4 | |
200 | 2.18 | 87.9 | -492 | 198 | 248 | 510 | 91.7 | 42.4 | 210.9 | 88.2 | |
250 | 1.42 | 92.1 | -493 | 188 | 238 | 415 | 93.2 | 70.2 | 154.1 | 92.8 |
Table 1 Different corrosion and inhibition parameters for mild steel in 15% HCl solution in the absence and presence of different concentrations of inhibitors at 303 K
Inhibitor | Conc. ppm | Weight loss data | Tafel extrapolation data | Impedance data | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CR (mm/y) | η (%) | Ecorr (mV) | ba (mV/dec) | bc (mV/dec) | Icorr (μA/cm2) | η (%) | Rct (Ω cm2) | Cdl (μF/cm2) | η (%) | ||
Blank | – | 18.20 | – | -502 | 334 | 312 | 6126 | – | 5.0 | 831.5 | – |
Inh I | 20 | 6.57 | 63.5 | -492 | 286 | 305 | 2156 | 64.8 | 14.4 | 513.9 | 65.3 |
50 | 4.07 | 77.4 | -491 | 254 | 287 | 1242 | 79.7 | 22.6 | 327.4 | 77.2 | |
100 | 3.29 | 81.7 | -494 | 242 | 278 | 1074 | 82.5 | 33.0 | 224.2 | 84.8 | |
150 | 1.78 | 90.1 | -486 | 234 | 256 | 465 | 92.4 | 47.5 | 128.3 | 89.3 | |
200 | 1.51 | 91.6 | -484 | 232 | 246 | 325 | 94.7 | 64.5 | 108.5 | 92.1 | |
250 | 0.99 | 94.5 | -482 | 215 | 252 | 146 | 97.6 | 127.1 | 70.35 | 96.0 | |
Inh II | 20 | 7.08 | 60.7 | -492 | 266 | 292 | 2292 | 62.6 | 14.0 | 278.2 | 64.3 |
50 | 4.25 | 76.4 | -488 | 227 | 266 | 1352 | 77.9 | 21.8 | 244.7 | 77.1 | |
100 | 3.67 | 79.6 | -487 | 224 | 258 | 1140 | 81.4 | 27.8 | 231.1 | 82.0 | |
150 | 2.55 | 85.8 | -493 | 218 | 254 | 696 | 88.6 | 32.0 | 219.1 | 84.4 | |
200 | 2.18 | 87.9 | -492 | 198 | 248 | 510 | 91.7 | 42.4 | 210.9 | 88.2 | |
250 | 1.42 | 92.1 | -493 | 188 | 238 | 415 | 93.2 | 70.2 | 154.1 | 92.8 |
Inhibitor | Temperature (K) | η (%) | CR (mm/y) | Ea (kJ/mol) | ΔH* (kJ/mol) | ΔS* (J/mol) | Kads | |
---|---|---|---|---|---|---|---|---|
Blank | 303 | 18.02 | 57.24 | 54.61 | -47.82 | – | – | |
313 | 58.17 | |||||||
323 | 98.93 | |||||||
333 | 144.54 | |||||||
Inh I | 303 | 94.5 | 0.99 | 83.13 | 81.59 | -16.40 | 2.97 × 104 | -36.66 |
313 | 90.4 | 5.58 | ||||||
323 | 88.1 | 11.77 | ||||||
333 | 85.6 | 20.81 | ||||||
Inh II | 303 | 92.1 | 1.42 | 73.21 | 83.29 | -25.40 | 2.14 × 104 | -35.24 |
313 | 88.2 | 6.86 | ||||||
323 | 85.4 | 14.44 | ||||||
333 | 83.6 | 23.70 |
Table 2 Immersion test results of the mild steel in 15% HCl in the presence of 250 ppm concentration of inhibitors at different temperatures (303–333 K)
Inhibitor | Temperature (K) | η (%) | CR (mm/y) | Ea (kJ/mol) | ΔH* (kJ/mol) | ΔS* (J/mol) | Kads | |
---|---|---|---|---|---|---|---|---|
Blank | 303 | 18.02 | 57.24 | 54.61 | -47.82 | – | – | |
313 | 58.17 | |||||||
323 | 98.93 | |||||||
333 | 144.54 | |||||||
Inh I | 303 | 94.5 | 0.99 | 83.13 | 81.59 | -16.40 | 2.97 × 104 | -36.66 |
313 | 90.4 | 5.58 | ||||||
323 | 88.1 | 11.77 | ||||||
333 | 85.6 | 20.81 | ||||||
Inh II | 303 | 92.1 | 1.42 | 73.21 | 83.29 | -25.40 | 2.14 × 104 | -35.24 |
313 | 88.2 | 6.86 | ||||||
323 | 85.4 | 14.44 | ||||||
333 | 83.6 | 23.70 |
Fig. 7 SEM images of the mild steel in 15% HCl solution after 6 h immersion at 303 K: a before immersion (polished); b after immersion without inhibitor; c in presence of inhibitor Inh I; d in presence of inhibitor Inh II
Fig. 8 Optimized structure (left) and HOMO (center) and LUMO (right) distribution for molecules: a Inh I; b Inh II (atom legend: white = H; grey = C; blue = N; red = O; yellow = S)
Inhibitor | EHOMO (eV) | ELUMO (eV) | ΔE (eV) | μ (D) | η (eV) | σ (eV) | ΔN (e) | Binding energy (kcal/mol) | Molecular surface area (10-2 nm2) |
---|---|---|---|---|---|---|---|---|---|
Inh I | -7.8991 | -1.2277 | 6.6713 | 2.4973 | 3.3356 | 0.2997 | 0.3224 | -5446.32 | 806.38 |
Inh II | -7.9218 | -0.9956 | 6.9261 | 1.7457 | 3.4630 | 0.2887 | 0.2812 | -5385.18 | 689.61 |
Table 3 Quantum chemical parameters for different inhibitors
Inhibitor | EHOMO (eV) | ELUMO (eV) | ΔE (eV) | μ (D) | η (eV) | σ (eV) | ΔN (e) | Binding energy (kcal/mol) | Molecular surface area (10-2 nm2) |
---|---|---|---|---|---|---|---|---|---|
Inh I | -7.8991 | -1.2277 | 6.6713 | 2.4973 | 3.3356 | 0.2997 | 0.3224 | -5446.32 | 806.38 |
Inh II | -7.9218 | -0.9956 | 6.9261 | 1.7457 | 3.4630 | 0.2887 | 0.2812 | -5385.18 | 689.61 |
[1] | A. Galal, N.F. Atta, M.H.S. Al-Hassan, Mater. Chem. Phys. 89, 38(2005)10.1016/j.matchemphys.2004.08.019 |
[2] | K.F. Khaled, N.A. Al-Mobarak, Int. J. Electrochem. Sci. 7, 1045(2012) |
[3] | K.F. Khaled, N.S. Abdel-Shafi, N.A. Al-Mobarak, Int. J. Electrochem. Sci. 7, 1027(2012) |
[4] | K. Bouhrira, A. Chetouani, D. Zerouali, B. Hammouti, A. Yahyi, A. Et-Touhami, R. Yahyaoui, R. Touzani, Res. Chem. Intermed. (2012). doi:10.1007/s11164-012-0983-1 |
[5] | M.N. El-Haddad, A.S. Fouda, H.A. Mostafa, J. Mater. Eng. Perform. 22, 2277(2013) |
[6] | E.E. Ebenso, U.J. Ekpe, B.I. Ita, U.J. Ibok, Mater. Chem. Phys. 60, 79(1999)10.1016/S0254-0584(99)00074-7 |
[7] | I.B. Obot, N.O. Obi-Egbedi, Corros. Sci. 52, 198(2010)10.1016/j.corsci.2009.09.002 |
[8] | I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51, 1868(2009)10.1016/j.corsci.2009.05.017 |
[9] | A. Comel, G. Kirsch, J. Heterocycl. Chem. 38, 1167(2001)10.1002/jhet.5570380521 |
[10] | G. Shukla, S.K. Dwivedi, P. Sundaram, S. Prakash, Ind. Eng. Chem. Res. 50, 11954(2011)10.1021/ie200713y |
[11] | H.A. Sorkhabi, B. Shaabani, D. Seifzdeh, Appl. Surf. Sci. 239, 154(2005)10.1016/j.apsusc.2004.05.143 |
[12] | A.U. Ezeoke, O.G. Adeyemi, O.A. Akerele, N.O. Obi-Egbedi, Int. J. Electrochem. Sci. 7, 534(2012) |
[13] | E.E. Ebenso, I.B. Obot, Int. J. Electrochem. Sci. 5, 2012(2010) |
[14] | L. Fragoza-Mar, O. Olivares-Xometl, M.A. Domínguez-Aguilar, E.A. Flores, P. Arellanes-Lozada, F. Jimenez-Cruz, Corros. Sci. 61, 171(2012)10.1016/j.corsci.2012.04.031 |
[15] | I. Dehri, M. Ozcan, Mater. Chem. Phys. 98, 316(2006)10.1016/j.matchemphys.2005.09.020 |
[16] | A. Popova, E. Sokolova, S. Raicheva, M. Chritov, Corros. Sci. 45, 33(2003)10.1016/S0010-938X(02)00072-0 |
[17] | A.R.S. Priya, V.S. Muralidharam, A. Subramania, Corrosion 64, 541(2008)10.5006/1.3278490 |
[18] | G. Quartarone, G. Moretti, A. Tassan, A. Zingales, Mater. Corros. 45, 641(1994)10.1002/maco.19940451203 |
[19] | S.V. Ramesh, V. Adhikari, Bull. Mater. Sci. 31, 699(2007)10.1007/s12034-008-0111-4 |
[20] | J.D. Talati, D.K. Gandhi, Corros. Sci. 23, 1315(1983)10.1016/0010-938X(83)90081-1 |
[21] | Z. Szklarska-Smialowska, J. Mankowski, Corros. Sci. 18, 953(1978)10.1016/0010-938X(78)90030-6 |
[22] | A. Yurt, S. Ulutas, H. Dat, Appl. Surf. Sci. 253, 919(2006)10.1016/j.apsusc.2006.01.026 |
[23] | M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, A. Gandomi, Corros. Sci. 50, 2172(2008)10.1016/j.corsci.2008.06.020 |
[24] | D. Jayaperumal, Mater. Chem. Phys. 119, 478(2010)10.1016/j.matchemphys.2009.09.028 |
[25] | E.S. Ferreira, C. Giancomlli, F.C. Giacomlli, A. Spinelli, Mater. Chem. Phys. 83, 129(2004)10.1016/j.matchemphys.2003.09.020 |
[26] | I. Ahamad, R. Prasad, M.A. Quraisi, Corros. Sci. 52, 1472(2010)10.1016/j.corsci.2010.01.015 |
[27] | B. Trachli, M. Keddam, H.A. Takenouti, Corros. Sci. 44, 997(2002)10.1016/S0010-938X(01)00124-X |
[28] | S. Xia, M. Qiu, L. Yu, F. Liu, H. Zhao, Corros. Sci. 50, 2021(2008)10.1016/j.corsci.2008.04.021 |
[29] | E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, Int. J. Quantum Chem. 110, 1003(2010)10.1002/qua.22249 |
[30] | Y.M. Tang, W.Z. Yang, X.S. Yin, Y. Liu, R. Wan, J.T. Wang, Mater. Chem. Phys. 116, 479(2009)10.1016/j.matchemphys.2009.04.018 |
[31] | V.S. Sastri, J.R. Perumareddi, Corrosion 53, 617(1997)10.5006/1.3290294 |
[32] | I. Lukovits, E. Klaman, F. Zucchi, Corrosion 57, 3(2001)10.5006/1.3290328 |
[33] | G. Pearson, J. Org. Chem. 54, 1423(1989)10.1021/jo00267a034 |
[34] | A. Kokalj, Chem. Phys. 393, 1(2012)10.1016/j.chemphys.2011.10.021 |
[35] | A. Stoyanova, G. Petkova, S.D. Peyerimhoff, Chem. Phys. 279, 1(2002)10.1016/S0301-0104(02)00408-1 |
[36] | O. Benali, L. Larabi, M. Traisnel, L. Gengembre, Y. Harek, Appl. Surf. Sci. 253, 6130(2007)10.1016/j.apsusc.2007.01.075 |
[37] | G. Gao, C. Liang, Electrochim. Acta 52, 4554(2007)10.1016/j.electacta.2006.12.058 |
[38] | I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Corros. Sci. 51, 276(2009)10.1016/j.corsci.2008.11.013 |
[39] | I.B. Obot, N.O. ObiEgbedi, Surf. Rev. Lett. 15, 903(2008)10.1142/S0218625X08012074 |
[1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[2] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[3] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[4] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[5] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[6] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[7] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[8] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[9] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[10] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[11] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[12] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
[13] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[14] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[15] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||