Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1421-1432.DOI: 10.1007/s40195-023-01561-4
Previous Articles Next Articles
Xi-Zhao Shi1, Zhong-Yu Cui1(), Jie Li2, Bing-Chen Hu2, Yi-Qiang An1, Xin Wang1, Hong-Zhi Cui1
Received:
2023-01-15
Revised:
2023-03-02
Accepted:
2023-03-23
Online:
2023-09-10
Published:
2023-08-25
Contact:
Zhong‑Yu Cui, cuizhongyu@ouc.edu.cn
Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432.
Add to citation manager EndNote|Ris|BibTeX
Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|
3.2 | 0.83 | 0.29 | 0.014 | 0.0028 | 0.0022 | 0.00072 | Bal. |
Table 1 Chemical composition of AZ31B magnesium alloy (wt%)
Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|
3.2 | 0.83 | 0.29 | 0.014 | 0.0028 | 0.0022 | 0.00072 | Bal. |
Annual average temperature | Highest recorded temperature | Warm season (October to March) average temperature | Lowest recorded temperature | Annual average relative humidity | Climate | |
---|---|---|---|---|---|---|
Zhongshan station | − 7.2 to − 12.6 ℃ | 9.6 ℃ | − 4.1 ℃ | − 36.4 ℃ | 62.5% | Subpolar continental climate |
Inexpressible Island | − 15.3 to − 18.7 ℃ | 5.4 ℃ | − 9.5 ℃ | − 39.3 ℃ | 42.1% | Polar continental climate |
Table 2 Climate characteristics of Zhongshan station in 2019-2021 and Inexpressible Island in 2013
Annual average temperature | Highest recorded temperature | Warm season (October to March) average temperature | Lowest recorded temperature | Annual average relative humidity | Climate | |
---|---|---|---|---|---|---|
Zhongshan station | − 7.2 to − 12.6 ℃ | 9.6 ℃ | − 4.1 ℃ | − 36.4 ℃ | 62.5% | Subpolar continental climate |
Inexpressible Island | − 15.3 to − 18.7 ℃ | 5.4 ℃ | − 9.5 ℃ | − 39.3 ℃ | 42.1% | Polar continental climate |
Fig. 1 Corrosion rates of AZ31B magnesium alloy exposed to various locations including Zhongshan station (ZS), Xisha Island (XS) [15], Inexpressible Island (IE) and Turpan (TP) [18]
Fig. 5 CLSM images of both sides of AZ31 alloy after exposure in Zhongshan station and Inexpressible Island for 1 and 24 months, respectively. The statistical analysis results are summarized and listed. Npit: pit number density; dmax: the maximum pit depth; davg: the average pit depth; Vmax: the maximum pit volume; Vavg: the average pit volume
Fig. 6 XRD analysis of the corrosion products formed on AZ31B magnesium alloy after exposure in Zhongshan station a and Inexpressible Island b for 1 month and 24 months, respectively, and the proportion of each component in corrosion products c
Fig. 7 Nyquist a, c, Bode b, d diagrams of AZ31B magnesium alloy after exposure in Zhongshan station for 1 month a, b, in Inexpressible Island c, d for 24 months
Immersion Time (h) | Rs (Ω·cm2) | CPEf (Ω−1·cm−2·sn) | Rf (Ω·cm2) | CPEdl (Ω−1·cm−2·sn) | Rct (Ω·cm2) | RL (Ω·cm2) | L (H·cm−2) | |
---|---|---|---|---|---|---|---|---|
Zhongshan station | 0.5 | 34.25 | 1.88 × 10-6 | 1016 | 2.11 × 10-8 | 3108 | 1.86 × 104 | 3032 |
4 | 47.58 | 8.32 × 10-6 | 434.9 | 5.40 × 10-7 | 1990 | 5008 | 627.6 | |
8 | 49.8 | 4.68 × 10-6 | 107.5 | 4.41 × 10-6 | 1219 | 3557 | 1134 | |
12 | 50.1 | 4.59 × 10-6 | 68.1 | 6.65 × 10-6 | 1377 | 3064 | 606 | |
24 | 47.84 | 1.12 × 10-5 | 54.13 | 1.51 × 10-5 | 1550 | 2809 | 380.4 | |
48 | 39.18 | 2.06 × 10-5 | 115.4 | 1.44 × 10-5 | 1428 | 2482 | 476.2 | |
Inexpressible island | 0.5 | 14.71 | 3.29 × 10-6 | 807.8 | 4.35 × 10-6 | 1.68 × 105 | ||
4 | 16.55 | 1.34 × 10-5 | 413.2 | 270.4 | 464.7 | |||
8 | 19.35 | 3.08 × 10-5 | 334.6 | 401 | 484 | |||
12 | 17.79 | 3.31 × 10-5 | 375.5 | 270.8 | 459.2 | |||
24 | 18.6 | 3.35 × 10-5 | 576.5 | 554 | 4146 | |||
48 | 17.48 | 2.95 × 10-5 | 632.4 | 620.4 | 4687 |
Table 3 Fitted EIS parameters for AZ31B magnesium after exposure in different sites
Immersion Time (h) | Rs (Ω·cm2) | CPEf (Ω−1·cm−2·sn) | Rf (Ω·cm2) | CPEdl (Ω−1·cm−2·sn) | Rct (Ω·cm2) | RL (Ω·cm2) | L (H·cm−2) | |
---|---|---|---|---|---|---|---|---|
Zhongshan station | 0.5 | 34.25 | 1.88 × 10-6 | 1016 | 2.11 × 10-8 | 3108 | 1.86 × 104 | 3032 |
4 | 47.58 | 8.32 × 10-6 | 434.9 | 5.40 × 10-7 | 1990 | 5008 | 627.6 | |
8 | 49.8 | 4.68 × 10-6 | 107.5 | 4.41 × 10-6 | 1219 | 3557 | 1134 | |
12 | 50.1 | 4.59 × 10-6 | 68.1 | 6.65 × 10-6 | 1377 | 3064 | 606 | |
24 | 47.84 | 1.12 × 10-5 | 54.13 | 1.51 × 10-5 | 1550 | 2809 | 380.4 | |
48 | 39.18 | 2.06 × 10-5 | 115.4 | 1.44 × 10-5 | 1428 | 2482 | 476.2 | |
Inexpressible island | 0.5 | 14.71 | 3.29 × 10-6 | 807.8 | 4.35 × 10-6 | 1.68 × 105 | ||
4 | 16.55 | 1.34 × 10-5 | 413.2 | 270.4 | 464.7 | |||
8 | 19.35 | 3.08 × 10-5 | 334.6 | 401 | 484 | |||
12 | 17.79 | 3.31 × 10-5 | 375.5 | 270.8 | 459.2 | |||
24 | 18.6 | 3.35 × 10-5 | 576.5 | 554 | 4146 | |||
48 | 17.48 | 2.95 × 10-5 | 632.4 | 620.4 | 4687 |
Fig. 9 Schematic diagram of the corrosion mechanism of AZ31B in the Antarctic atmospheric environment. a Oxidation of magnesium alloy and further formation of Brucite; b brucite carbonation; c formation of hydrated magnesium carbonate; d formation of magnesium hydroxy carbonate
[1] | Z.Y. Cui, F. Ge, X. Wang, J. Chin. Soc. Corros. Prot. 42, 403 (2021) |
[2] |
M. Morcillo, B. Chico, D. de la Fuente, E. Almeida, G. Joseph, S. Rivero, B. Rosales, Cold Reg. Sci. Technol. 40, 165 (2004)
DOI URL |
[3] |
C. Arroyave, F. Lopez, M. Morcillo, Corros. Sci. 37, 1751 (1995)
DOI URL |
[4] |
J. J. S. Rodrı́guez, F. J. S. Hernandez, J. E. G. Gonzalez, Corros. Sci. 45, 799 (2003).
DOI URL |
[5] |
R. Vera, B. Rosales, C. Tapia, Corros. Sci. 45, 321 (2003)
DOI URL |
[6] |
D. Singh, S. Yadav, J.K. Saha, Corros. Sci. 50, 93 (2008)
DOI URL |
[7] | B. Chico, D. De la Fuente, I. Díaz, J. Simancas, M. Morcillo, Materials 10, 601 (2017) |
[8] | C. Peng, M.X. Guo, T.Z. Gu, X.H. Li, C. Wang, Z.Y. Wang, C. Sun, Acta Metall. Sin. -Engl. Lett. 35, 1207 (2022) |
[9] | P. Maxwell, A. Viduka,Proceedings of Metal (2004). |
[10] |
H. Pan, K. Pang, F.Z. Cui, F. Ge, C. Man, X. Wang, Z.Y. Cui, Corros. Sci. 157, 420 (2019)
DOI URL |
[11] | T.B. Abbott, Corrosion 71, 120 (2015) |
[12] |
Y.G. Li, Y.H. Wei, L.F. Hou, P.J. Han, Corros. Sci. 69, 67 (2013)
DOI URL |
[13] |
J.S. Liao, M. Hotta, S. Motoda, T. Shinohara, Corros. Sci. 71, 53 (2013)
DOI URL |
[14] |
J.S. Liao, M. Hotta, Corros. Sci. 112, 276 (2016)
DOI URL |
[15] |
Z.Y. Cui, X.G. Li, K. Xiao, C.F. Dong, Corros. Sci. 76, 243 (2013)
DOI URL |
[16] |
M. Jönsson, D. Persson, C. Leygraf, Corros. Sci. 50, 1406 (2008)
DOI URL |
[17] |
J.S. Liao, M. Hotta, Corros. Sci. 100, 353 (2015)
DOI URL |
[18] |
C. Man, C.F. Dong, L. Wang, D.C. Kong, X.G. Li, Corros. Sci. 163, 108274 (2020)
DOI URL |
[19] |
M. Esmaily, M. Shahabi-Navid, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao, L.G. Johansson, Corros. Sci. 90, 420 (2015)
DOI URL |
[20] |
M. Esmaily, D. Blücher, J.E. Svensson, M. Halvarsson, L.G. Johansson, Scr. Mater. 115, 91 (2016)
DOI URL |
[21] | A.H. Xie, S.M. Wang, Y.C. Wang, C.J. Li, Sci. Cold Arid. Reg. 10, 369 (2018) |
[22] |
J. Jin, X. Chen, L.Q. Xu, Y.G. Nie, X.Y. Wang, H.H. Huang, S.D. Emslie, X.D. Liu, Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110497 (2021)
DOI URL |
[23] | M.H. Ding, L.G. Bian, L.L. Zhang, Z.M. Wang, C.G. Lu, W.J. Sun, N.M. Yuan, L. Fu, Z.L. Xie, Chin. J. Polar Res. 27, 344 (2015) |
[24] |
Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci. 52, 1796 (2010)
DOI URL |
[25] | S. Feliu Jr., C. Maffiotte, J.C. Galván, V. Barranco, Corros. Sci. 53, 1865 (2011) |
[26] | X.W. Guo, J.W. Chang, S.M. He, W.J. Ding, X.S. Wang, Electrochim. Acta 52, 2570 (2007) |
[27] |
C. Baliga, P. Tsakiropoulos, Mater. Sci. Technol. 9, 513 (1993)
DOI URL |
[28] | S. Doja, L. Bichler, S. Fan, Acta Metall. Sin. -Engl. Lett. 30, 367 (2017) |
[29] | D.H. Xia et al., J. J. Sci. Technol. 112, 151 (2022) |
[30] |
D.J. Zhou, M.Y. Wang, Y.Y. Ji, Z. Liu, Z.M. Gao, W.B. Hu, Y.H. Guo, Anti-Corros. Methods Mater. 70, 86 (2023)
DOI URL |
[31] |
R. Gao, Q. Liu, J. Wang, X.F. Zhang, W.L. Yang, J.Y. Liu, L.H. Liu, Chem. Eng. J. 241, 352 (2014)
DOI URL |
[32] | G.L. Song, Corros. Sci. 51, 2063 (2009) |
[33] |
X.J. Cui, X.Z. Lin, C.H. Liu, R.S. Yang, X.W. Zheng, M. Gong, Corros. Sci. 90, 402 (2015)
DOI URL |
[34] | F. Mohammadi, T. Nickchi, M. Attar, A. Alfantazi, Electrochim. Acta 56, 8727 (2011) |
[35] | S. Feliu, Metals 10, 775 (2020) |
[36] |
C. Pan, X. Wang, Y. Behnamian, Z. Wu, Z. Qin, D.H. Xia, W. Hu, J. Electrochem. Soc. 167, 161510 (2020)
DOI |
[37] |
Y.Y. Zhu, W.D. Gao, H.D. Huang, W.H. Chang, S.F. Zhang, R.F. Zhang, R.F. Zhao, Y.J. Zhang, Appl. Surf. Sci. 487, 581 (2019)
DOI URL |
[38] | Z.Z. Yin, Z.Q. Zhang, X.J. Tian, Z.L. Wang, R.C. Zeng, Acta Metall. Sin. -Engl. Lett. 34, 25 (2021) |
[39] |
M. Esmaily, P. Malmberg, M. Shahabi-Navid, J. Svensson, L. Johansson, Appl. Surf. Sci. 360, 98 (2016)
DOI URL |
[40] | J. Kish, Y. Hu, J. Li, W. Zheng, J. McDermid, Corrosion 68, 468 (2012) |
[41] |
M.C. Merino, A. Pardo, R. Arrabal, S. Merino, P. Casajus, M. Mohedano, Corros. Sci. 52, 1696 (2010)
DOI URL |
[42] |
J. Chen, J.Q. Wang, E.H. Han, W. Ke, Corros. Eng. Sci. Technol. 46, 277 (2011)
DOI URL |
[43] |
Z.Y. Cui, X.G. Li, K. Xiao, C.F. Dong, L.W. Wang, D.W. Zhang, Z.Y. Liu, J. Mater. Eng. Perform. 24, 296 (2015)
DOI URL |
[44] |
D. De la Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Corros. Sci. 53, 604 (2011)
DOI URL |
[45] | K. Refson, R. Wogelius, D. Fraser, M. Payne, M. Lee, V. Milman, Phys. Rev. B 52, 10823 (1995) |
[46] | O.S. Pokrovsky, J. Schott, Geochim. Cosmochim. Acta 68, 31 (2004) |
[47] |
D.A. Vermilyea, J. Electrochem. Soc. 116, 1179 (1969)
DOI URL |
[48] |
D.A. Vermilyea, C.F. Kirk, J. Electrochem. Soc. 116, 1487 (1969)
DOI URL |
[49] |
W. White, Environ. Geol. 30, 46 (1997)
DOI URL |
[50] | M. Jönsson, D. Persson, S. Kimab, Atmospheric corrosion of magnesium (Mg) alloys, in Corrosion of Magnesium Alloys. (Elsevier, 2011), pp. 269-298. https://doi.org/10.1533/9780857091413.3.269 |
[51] |
J. Canterford, G. Tsambourakis, B. Lambert, Mineral. Mag. 48, 437 (1984)
DOI URL |
[52] | V. Rheinheimer, C. Unluer, J. Liu, S. Ruan, J. Pan, P.J. Monteiro, Materials 10, 75 (2017) |
[53] |
R. Hay, N. Dung, A. Lesimple, C. Unluer, K. Celik, Cem. Concr. Compos. 118, 103955 (2021)
DOI URL |
[1] | Liping Wu, Chen Liu, Jie Wei, Junhua Dong, Lin Zhao, Chao Li, Wei Ke, Yiqing Chen, Changgang Wang. Influence of pH on the Formation, Composition and Protectiveness of Fluoride Conversion Film Deposited on AZ31 Magnesium Alloy in KF Solution [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1397-1408. |
[2] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
[3] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[4] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[5] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[6] | Fei-Yang Chen, Peng-Cheng Guo, Zi-Han Jiang, Xiao Liu, Tie-Jun Song, Chao Xie. Abnormal Twinning Behavior and Constitutive Modeling of a Fine-Grained Extruded Mg-8.0Al-0.1Mn-2.0Ca Alloy under High-Speed Impact along Various Directions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 281-294. |
[7] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[8] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[9] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[10] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[11] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[12] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[13] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[14] | Rabia Kara, Huseyin Zengin. Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1195-1206. |
[15] | Xin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||