Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1195-1206.DOI: 10.1007/s40195-021-01363-6
Previous Articles Next Articles
Rabia Kara1, Huseyin Zengin1()
Received:
2021-07-21
Revised:
2021-10-04
Accepted:
2021-10-25
Online:
2022-07-10
Published:
2022-01-08
Contact:
Huseyin Zengin
About author:
Huseyin Zengin, huseyinzengin@karabuk.edu.trRabia Kara, Huseyin Zengin. Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1195-1206.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Al | Zn | Mn | Si | Fe | Ni | Mg |
---|---|---|---|---|---|---|---|
AZ80 | 8.14 | 0.56 | 0.15 | 0.05 | <0.01 | <0.01 | Bal. |
Table 1 XRF result of the magnesium alloy substrate
Alloy | Al | Zn | Mn | Si | Fe | Ni | Mg |
---|---|---|---|---|---|---|---|
AZ80 | 8.14 | 0.56 | 0.15 | 0.05 | <0.01 | <0.01 | Bal. |
Specimen | CNT (g/L) | Na2SiO3 (g/L) | NaOH (g/L) | Na2[SiF6] (g/L) | pH | Conductivity (ms/cm) |
---|---|---|---|---|---|---|
0 CNT | 0 | 10 | 1 | 3 | 12.0 | 17.74 |
05 CNT | 0.5 | 10 | 1 | 3 | 12.1 | 18.56 |
1 CNT | 1 | 10 | 1 | 3 | 12.2 | 19.17 |
2 CNT | 2 | 10 | 1 | 3 | 12.2 | 19.32 |
4 CNT | 4 | 10 | 1 | 3 | 12.0 | 19.96 |
Table 2 Properties of the electrolytes for the PEO process
Specimen | CNT (g/L) | Na2SiO3 (g/L) | NaOH (g/L) | Na2[SiF6] (g/L) | pH | Conductivity (ms/cm) |
---|---|---|---|---|---|---|
0 CNT | 0 | 10 | 1 | 3 | 12.0 | 17.74 |
05 CNT | 0.5 | 10 | 1 | 3 | 12.1 | 18.56 |
1 CNT | 1 | 10 | 1 | 3 | 12.2 | 19.17 |
2 CNT | 2 | 10 | 1 | 3 | 12.2 | 19.32 |
4 CNT | 4 | 10 | 1 | 3 | 12.0 | 19.96 |
Fig. 2 SEM micrographs of the as-cast AZ80 alloy at a low and b high magnifications, c XRD pattern of the corresponding alloy and d EDX results of the points indicated in b
Specimen | Ra (µm) |
---|---|
Uncoated | 0.2±0.02 |
0 CNT | 1.3±0.16 |
05 CNT | 0.8±0.08 |
1 CNT | 1.2±0.15 |
2 CNT | 1.9±0.21 |
4 CNT | 2.7±0.29 |
Table 3 Mean surface roughness values of the specimens
Specimen | Ra (µm) |
---|---|
Uncoated | 0.2±0.02 |
0 CNT | 1.3±0.16 |
05 CNT | 0.8±0.08 |
1 CNT | 1.2±0.15 |
2 CNT | 1.9±0.21 |
4 CNT | 2.7±0.29 |
Fig. 4 SEM surface micrographs of PEO-coated specimens with different CNT additions: a 0 CNT, b 0.5 CNT, c 1 CNT, d 2 CNT, e 4 CNT and f EDX results of the areas indicated in figures
Fig. 7 Cross-sectional SEM micrographs of the PEO-coated specimens with different CNT additions: a 0 CNT, b 0.5 CNT, c CNT, d 2 CNT, e 4 CNT and f, g EDX results of the lines as shown in a and e, respectively
Specimen | Thickness (µm) | Hardness (HV0.1) |
---|---|---|
Uncoated | - | 64±2 |
0 CNT | 4.7±0.9 | 481±7 |
05 CNT | 5.5±1.2 | 533±8 |
1 CNT | 6.9±1.5 | 538±7 |
2 CNT | 7.2±1.5 | 579±9 |
4 CNT | 10.1±2 | 624±10 |
Table 4 Thickness and Vickers microhardness values of the PEO-coated specimens measured from cross sections
Specimen | Thickness (µm) | Hardness (HV0.1) |
---|---|---|
Uncoated | - | 64±2 |
0 CNT | 4.7±0.9 | 481±7 |
05 CNT | 5.5±1.2 | 533±8 |
1 CNT | 6.9±1.5 | 538±7 |
2 CNT | 7.2±1.5 | 579±9 |
4 CNT | 10.1±2 | 624±10 |
Fig. 9 Wear depth profiles of the uncoated and PEO-coated specimens with different CNT additions: a AZ80 substrate, b 0 CNT, c 05 CNT, d 1 CNT, e 2 CNT and f 4 CNT
Fig. 10 SEM micrographs of the worn surfaces of the uncoated and PEO-coated specimens with different CNT additions: a AZ80 substrate, b 0 CNT, c 05 CNT, d 1 CNT, e 2 CNT and f 4 CNT
Specimen | Point | Composition (wt%) | |||||
---|---|---|---|---|---|---|---|
Mg | O | Al | C | Si | Na | ||
Uncoated | 1 | 81.9 | 11.4 | 6.2 | 0.5 | - | - |
0 CNT | 2 | 58.5 | 34.7 | 3.4 | 0.7 | 2.2 | 0.5 |
05 CNT | 3 | 59.8 | 31.9 | 3.9 | 1.5 | 2.5 | 0.4 |
1 CNT | 4 | 47.6 | 41.7 | 5.5 | 2.1 | 2.6 | 0.5 |
2 CNT | 5 | 40.2 | 47.5 | 4.9 | 3.8 | 2.9 | 0.7 |
4 CNT | 6 | 36.3 | 49.3 | 5.0 | 5.6 | 3.3 | 0.5 |
Table 5 EDX results of the areas as shown in Fig. 9
Specimen | Point | Composition (wt%) | |||||
---|---|---|---|---|---|---|---|
Mg | O | Al | C | Si | Na | ||
Uncoated | 1 | 81.9 | 11.4 | 6.2 | 0.5 | - | - |
0 CNT | 2 | 58.5 | 34.7 | 3.4 | 0.7 | 2.2 | 0.5 |
05 CNT | 3 | 59.8 | 31.9 | 3.9 | 1.5 | 2.5 | 0.4 |
1 CNT | 4 | 47.6 | 41.7 | 5.5 | 2.1 | 2.6 | 0.5 |
2 CNT | 5 | 40.2 | 47.5 | 4.9 | 3.8 | 2.9 | 0.7 |
4 CNT | 6 | 36.3 | 49.3 | 5.0 | 5.6 | 3.3 | 0.5 |
Specimen | icorr (A/cm2) | Ecorr (V) | Ebd (V) | βa (mV) | - βc (mV) | Rpol (Ω cm2) |
---|---|---|---|---|---|---|
Uncoated | 1.4×10-5 | -1.42 | -1.33 | 871.2 | 160.1 | 4.20×103 |
0 CNT | 2.5×10-6 | -1.38 | -1.26 | 373.3 | 371.6 | 32.9×103 |
05 CNT | 2.4×10-7 | -1.29 | -1.22 | 363.2 | 229.8 | 254.9×103 |
1 CNT | 5.9×10-7 | -1.26 | -0.9 | 337.3 | 338.4 | 124.5×103 |
2 CNT | 5.6×10-7 | -1.25 | -1.01 | 267.3 | 387.6 | 122.8×103 |
4 CNT | 2.5×10-6 | -1.30 | -1.15 | 569.6 | 572.4 | 49.6×103 |
Table 6 Tafel analysis results of the uncoated and PEO-coated specimens
Specimen | icorr (A/cm2) | Ecorr (V) | Ebd (V) | βa (mV) | - βc (mV) | Rpol (Ω cm2) |
---|---|---|---|---|---|---|
Uncoated | 1.4×10-5 | -1.42 | -1.33 | 871.2 | 160.1 | 4.20×103 |
0 CNT | 2.5×10-6 | -1.38 | -1.26 | 373.3 | 371.6 | 32.9×103 |
05 CNT | 2.4×10-7 | -1.29 | -1.22 | 363.2 | 229.8 | 254.9×103 |
1 CNT | 5.9×10-7 | -1.26 | -0.9 | 337.3 | 338.4 | 124.5×103 |
2 CNT | 5.6×10-7 | -1.25 | -1.01 | 267.3 | 387.6 | 122.8×103 |
4 CNT | 2.5×10-6 | -1.30 | -1.15 | 569.6 | 572.4 | 49.6×103 |
Specimen | Rs (Ω cm2) | Rp (Ω cm2) | Rb (Ω cm2) | Rct (Ω cm2) | CPEp (Ω-1 sn cm-2) | CPEb (Ω-1 sn cm-2) | CPEdl (Ω-1 sn cm-2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|
0 CNT | 112.7 | 20.8×103 | 16.4×103 | 17.6×103 | 840.8×10-9 | 1.9×10-6 | 12.3×10-6 | 7.5 |
05 CNT | 29.3 | 86.5×103 | 128.9×103 | 124.4×103 | 12.2×10-9 | 0.9×10-6 | 2.4×10-6 | 9.4 |
1 CNT | 62.4 | 41.4×103 | 109×103 | 51.4×103 | 459.6×10-9 | 3.1×10-6 | 24.1×10-6 | 1.2 |
2 CNT | 14.7 | 55.9×103 | 46.1×103 | 21.3×103 | 47.2×10-9 | 1.3×10-6 | 6.2×10-6 | 12.1 |
4 CNT | 24.3 | 18.8×103 | 17.7×103 | 19.8×103 | 777.4×10-9 | 3.1×10-6 | 15.4×10-6 | 0.2 |
Table 7 Fitting results of the EIS data for the PEO-coated specimens
Specimen | Rs (Ω cm2) | Rp (Ω cm2) | Rb (Ω cm2) | Rct (Ω cm2) | CPEp (Ω-1 sn cm-2) | CPEb (Ω-1 sn cm-2) | CPEdl (Ω-1 sn cm-2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|
0 CNT | 112.7 | 20.8×103 | 16.4×103 | 17.6×103 | 840.8×10-9 | 1.9×10-6 | 12.3×10-6 | 7.5 |
05 CNT | 29.3 | 86.5×103 | 128.9×103 | 124.4×103 | 12.2×10-9 | 0.9×10-6 | 2.4×10-6 | 9.4 |
1 CNT | 62.4 | 41.4×103 | 109×103 | 51.4×103 | 459.6×10-9 | 3.1×10-6 | 24.1×10-6 | 1.2 |
2 CNT | 14.7 | 55.9×103 | 46.1×103 | 21.3×103 | 47.2×10-9 | 1.3×10-6 | 6.2×10-6 | 12.1 |
4 CNT | 24.3 | 18.8×103 | 17.7×103 | 19.8×103 | 777.4×10-9 | 3.1×10-6 | 15.4×10-6 | 0.2 |
[1] | V. V. Joshi, J. B. Jordon, D. Orlov, N. R. Neelameggham, editors, Magnesium Technology 2019, 1st ed. 2019 edition (Springer, New York, 2019) |
[2] | M. O. Pekguleryuz, K. Kainer, A. A. Kaya, Fundamentals of Magnesium Alloy Metallurgy (Cambridge, UK, Woodhead Publishing, 2013) |
[3] | A.A. Luo, J. Magnes, Alloys 1,2 (2013) |
[4] |
G. Williams, N. Birbilis, H.N. McMurray, Electrochem. Commun. 36, 1 (2013)
DOI URL |
[5] |
C.S. Li, Y. Sun, F. Gebert, S.L. Chou, Adv. Energy Mater. 7, 1700869 (2017)
DOI URL |
[6] |
E.K. Brooks, M.T. Ehrensberger, J. Funct. Biomater. 8, 38 (2017)
DOI URL |
[7] |
Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, J. Alloys Compd. 619, 639 (2015)
DOI URL |
[8] |
H. Zengin, Y. Turen, Mater. Chem. Phys. 214, 421 (2018)
DOI URL |
[9] |
X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, M.L. Zheludkevich, Surf. Coat. Technol. 307, 1165 (2016)
DOI URL |
[10] | F. Aydin, A. Ayday, M. E. Turan, H. Zengin, Surf. Eng. 0, 1 (2019). |
[11] | C.Y. Li, X.L. Fan, R.C. Zeng, L.Y. Cui, S.Q. Li, F. Zhang, Q.K. He, M. B. Kannan, H.W.George Jiang, D.C. Chen, S.K. Guan, J. Mater. Sci. Technol. 35, 1088 (2019). |
[12] | C.Y. Li, C. Yu, R.C. Zeng, B.C. Zhang, L.Y. Cui, J. Wan, Y. Xia, Bioact. Mater. 5, 34 (2020) |
[13] |
Y. Zhang, F. Chen, Y. Zhang, C. Du, Tribol. Int. 146, 106135 (2020)
DOI URL |
[14] |
A. Apelfeld, B. Krit, V. Ludin, N. Morozova, B. Vladimirov, R.Z. Wu, Surf. Coat. Technol. 322, 127 (2017)
DOI URL |
[15] |
M. Toorani, M. Aliofkhazraei, M. Golabadi, A.S. Rouhaghdam, J. Alloys Compd. 719, 242 (2017)
DOI URL |
[16] |
M. Mohedano, C. Blawert, M.L. Zheludkevich, Mater. Des. 86, 735 (2015)
DOI URL |
[17] |
B.S. Lou, Y.Y. Lin, C.M. Tseng, Y.C. Lu, J.G. Duh, J.W. Lee, Surf. Coat. Technol. 332, 358 (2017)
DOI URL |
[18] |
H. Duan, C. Yan, F. Wang, Electrochim. Acta 52, 3785 (2007)
DOI URL |
[19] |
A.M. Pillai, A. Rajendra, A.K. Sharma, J. Appl. Electrochem. 48, 543 (2018)
DOI URL |
[20] |
C.Y. Li, X.L. Feng, X.L. Fan, X.T. Yu, Z.Z. Yin, M.B. Kannan, X.B. Chen, S.K. Guan, J. Zhang, R.C. Zeng, Adv. Eng. Mater. 21, 1900446 (2019)
DOI URL |
[21] |
L. Pezzato, V. Angelini, K. Brunelli, C. Martini, M. Dabalà, Trans. Nonferrous Met. Soc. China 28, 259 (2018)
DOI URL |
[22] | M. Daavari, M. Atapour, M. Mohedano, R. Arrabal, E. Matykina, A. Taherizadeh, Surf. Interfaces 22, 100850 (2021) |
[23] |
G. Peitao, T. Mingyang, Z. Chaoyang, Surf. Coat. Technol. 359, 197 (2019)
DOI URL |
[24] |
Z. Ur Rehman, M. Uzair, H.T. Lim, B.H. Koo, J. Alloys Compd. 726, 284 (2017)
DOI URL |
[25] |
Y. Wang, D. Wei, J. Yu, S. Di, J. Mater. Sci. Technol. 30, 984 (2014)
DOI |
[26] |
M. Roknian, A. Fattah-alhosseini, S.O. Gashti, M.K. Keshavarz, J. Alloys Compd. 740, 330 (2018)
DOI URL |
[27] |
J. Liang, L. Hu, J. Hao, Electrochim. Acta 52, 4836 (2007)
DOI URL |
[28] |
D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, I.M. Imshinetskiy, A.V. Puz’, J. Mater. Sci. Technol. 33, 461 (2017)
DOI |
[29] |
B.S. Lou, J.W. Lee, C.M. Tseng, Y.Y. Lin, C.A. Yen, Surf. Coat. Technol. 350, 813 (2018)
DOI URL |
[30] |
Q. Chen, Z. Jiang, S. Tang, W. Dong, Q. Tong, W. Li, Appl. Surf. Sci. 423, 939 (2017)
DOI URL |
[31] |
Y. Yürektürk, F. Muhaffel, M. Baydoğan, Surf. Coat. Technol. 269, 83 (2015)
DOI URL |
[32] |
M. Laleh, A.S. Rouhaghdam, T. Shahrabi, A. Shanghi, J. Alloys Compd. 496, 548 (2010)
DOI URL |
[33] |
H. Zengin, Mater. Res. Express 6,1065b8 (2019).
DOI URL |
[34] |
W. Liu, Y. Liu, Y. Lin, Z. Zhang, S. Feng, M. Talha, Y. Shi, T. Shi, Appl. Surf. Sci. 475, 645 (2019)
DOI URL |
[35] |
M. Sabouri, S. M. Mousavi Khoei, Surf. Coat. Technol. 334, 543 (2018).
DOI URL |
[36] |
X. Lu, S. P. Sah, N. Scharnagl, M. Störmer, M. Starykevich, M. Mohedano, C. Blawert, Mikhail. L. Zheludkevich, K. U. Kainer, Surf. Coat. Technol. 269, 155 (2015).
DOI URL |
[37] | Q. Li, J. Liang, Q. Wang, Plasma Electrolytic Oxidation Coatings on Lightweight Metals (IntechOpen, 2013). |
[38] |
P. Bala Srinivasan, J. Liang, C. Blawert, W. Dietzel, Appl. Surf. Sci. 256: 3265 (2010).
DOI URL |
[39] |
X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, K.U. Kainer, Electrochim. Acta 187, 20 (2016)
DOI URL |
[40] |
M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Wear 307,164 (2013)
DOI URL |
[41] |
H.J. Choi, S.M. Lee, D.H. Bae, Wear 270,12 (2010)
DOI URL |
[42] |
M. Decup, D. Malec, V. Bley, J. Appl. Phys. 106, 094103 (2009)
DOI URL |
[43] |
P.T. Dalla, I.K. Tragazikis, D.A. Exarchos, K.G. Dassios, N.M. Barkoula, T.E. Matikas, Appl. Sci. 9, 1032 (2019)
DOI URL |
[44] |
H. Zengin, Y. Turen, H. Ahlatci, Y. Sun, A.C. Karaoğlanli, Trans. Nonferrous Met. Soc. China 29, 1413 (2019)
DOI URL |
[45] |
M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, A. Atrens, Corros. Sci. 52, 3687 (2010)
DOI URL |
[46] |
R.O. Hussein, D.O. Northwood, X. Nie, Surf. Coat. Technol. 237, 357 (2013)
DOI URL |
[1] | A. Ullah, A. Khan, Z.B. Bao, Y.F. Yang, M.M. Xu, S.L. Zhu, F.H. Wang. Temperature Effect on Early Oxidation Behavior of NiCoCrAlY Coatings: Microstructure and Phase Transformation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 975-984. |
[2] | Zijun Liao, Jiankai Kang, Qi Luo, Caifeng Pan, Jiangdong Chen, Xiaolong Mo, Hanbo Zou, Wei Yang, Shengzhou Chen. Effect of Different Calcination Temperatures on the Structure and Properties of Zirconium-Based Coating Layer Modified Cathode Material Li1.2Mn0.54Ni0.13Co0.13O2 [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 985-995. |
[3] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[4] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[5] | Lihui Song, Ming Gao, Lili Tan, Zheng Ma, Peng Ni, Min Zhou, Di Na. Application Potential of Mg-Zn-Nd Alloy as a Gastrointestinal Anastomosis Nail Material [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 609-620. |
[6] | K. J. Tan, J. J. Liang, X. G. Wang, X. P. Tao, J. Gong, C. Sun, Y. Z. Zhou, X. F. Sun. Oxidation Performance and Interdiffusion Behaviour of two MCrAlY Coatings on a Fourth-Generation Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 679-692. |
[7] | Lu Yao, Yeqin He, Ziqiang Wang, Binyi Peng, Guoping Li, Yang Liu. Effect of Heat Treatment on the Wear Properties of Selective Laser Melted Ti-6Al-4V Alloy Under Different Loads [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 517-525. |
[8] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[9] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
[10] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
[11] | Yong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325. |
[12] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[13] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[14] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[15] | Ling-Yi Qian, Jing Wang, Yun-Shan Guo, He Liu, Ze-Bin Bao. Influences of Iridium and Palladium on Oxidation Resistance of PtAl Coating [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1120-1130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||