Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1433-1453.DOI: 10.1007/s40195-023-01546-3
Previous Articles Next Articles
Haotian Zhou1,2, Haijun Su1,2(), Yinuo Guo1,2, Yuan Liu1, Di Zhao1, Peixin Yang1,2, Zhonglin Shen1,2, Le Xia1, Min Guo1
Received:
2022-10-19
Revised:
2023-01-06
Accepted:
2023-01-19
Online:
2023-09-10
Published:
2023-08-25
Contact:
Haijun Su,shjnpu@nwpu.edu.cn
Haotian Zhou, Haijun Su, Yinuo Guo, Yuan Liu, Di Zhao, Peixin Yang, Zhonglin Shen, Le Xia, Min Guo. Formation and Evolution of Surface Morphology in Overhang Structure of IN718 Superalloy Fabricated by Laser Powder Bed Fusion[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1433-1453.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Front view of the samples at the overhang angle 45°; b side view of the samples at the overhang angle 45°; c schematic of the scanning strategy and the surface morphology; d the actual printed overhang sample diagram
Sample no. | Laser power (W) | Scanning speed (mm/s) | Hatch space (μm) | Volume energy density (J/mm3) |
---|---|---|---|---|
1 | 150 | 600 | 60 | 83.3 |
2 | 150 | 1000 | 75 | 40.0 |
3 | 150 | 1400 | 90 | 23.8 |
4 | 150 | 1800 | 105 | 15.9 |
5 | 200 | 600 | 75 | 88.9 |
6 | 200 | 1000 | 60 | 66.7 |
7 | 200 | 1400 | 105 | 27.2 |
8 | 200 | 1800 | 90 | 24.7 |
9 | 250 | 600 | 90 | 92.6 |
10 | 250 | 1000 | 105 | 47.6 |
11 | 250 | 1400 | 60 | 59.5 |
12 | 250 | 1800 | 75 | 37.0 |
13 | 300 | 600 | 105 | 95.2 |
14 | 300 | 1000 | 90 | 66.7 |
15 | 300 | 1400 | 75 | 57.1 |
16 | 300 | 1800 | 60 | 55.6 |
Table 1 Process parameters for fabricating IN718 by LPBF process
Sample no. | Laser power (W) | Scanning speed (mm/s) | Hatch space (μm) | Volume energy density (J/mm3) |
---|---|---|---|---|
1 | 150 | 600 | 60 | 83.3 |
2 | 150 | 1000 | 75 | 40.0 |
3 | 150 | 1400 | 90 | 23.8 |
4 | 150 | 1800 | 105 | 15.9 |
5 | 200 | 600 | 75 | 88.9 |
6 | 200 | 1000 | 60 | 66.7 |
7 | 200 | 1400 | 105 | 27.2 |
8 | 200 | 1800 | 90 | 24.7 |
9 | 250 | 600 | 90 | 92.6 |
10 | 250 | 1000 | 105 | 47.6 |
11 | 250 | 1400 | 60 | 59.5 |
12 | 250 | 1800 | 75 | 37.0 |
13 | 300 | 600 | 105 | 95.2 |
14 | 300 | 1000 | 90 | 66.7 |
15 | 300 | 1400 | 75 | 57.1 |
16 | 300 | 1800 | 60 | 55.6 |
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 1359.56 | 453.19 | 8.44 | 0.014 | Highly significant |
Scanning speed | 3 | 827.92 | 275.97 | 5.14 | 0.043 | Significant |
Hatch space | 3 | 91.24 | 30.41 | 0.57 | 0.657 | Not significant |
Error | 6 | 322.13 | 53.69 | |||
Total | 15 | 2554.5 |
Table 2 ANOVA for top surface roughness. Overhang angle = 45°. R2 = 87.61%
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 1359.56 | 453.19 | 8.44 | 0.014 | Highly significant |
Scanning speed | 3 | 827.92 | 275.97 | 5.14 | 0.043 | Significant |
Hatch space | 3 | 91.24 | 30.41 | 0.57 | 0.657 | Not significant |
Error | 6 | 322.13 | 53.69 | |||
Total | 15 | 2554.5 |
Fig. 7 SEM images of top surface under low VED at 45°: a 23.8 J/mm3; b 24.7 J/mm3; c 27.2 J/mm3; d 37.0 J/mm3. 3D surface morphology under low VED: e 23.8 J/mm3; f 24.7 J/mm3; g 27.2 J/mm3; h 37.0 J/mm3
Fig. 8 Schematic diagram of the Rayleigh-Plateau instability: a necking-down stage; b melt pool breaks into droplets. SEM image: c irregular melt track with necking-down; d irregular melt track with breakup
Fig. 9 Top surface morphologies under medium VED at 45°: a SEM image at 59.5 J/mm3; b SEM image of sample 14 at 66.7 J/mm3; c 3D surface morphology at 59.5 J/mm3; d 3D surface morphology of sample 14 at 66.7 J/mm3
Fig. 11 SEM images of the top surface under different VED: a sample 6 with 66.7 J/mm3; b 83.3 J/m m3; c 88.9 J/mm3; d 92.6 J/mm3. 3D surface morphology images under different VED: e sample 6 with 66.7 J/mm3; f 83.3 J/mm3; g 88.9 J/mm3; h 92.6 J/mm3
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 2288.9 | 763.0 | 6.49 | 0.026 | Significant |
Scanning speed | 3 | 2630.9 | 877.0 | 7.45 | 0.019 | Highly significant |
Hatch space | 3 | 418.4 | 139.5 | 1.19 | 0.391 | Not significant |
Error | 6 | 705.9 | 117.6 | |||
Total | 15 | 6044.1 |
Table 3 ANOVA for down-skin surface roughness. Overhang angle = 30°. R2 = 88.32%
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 2288.9 | 763.0 | 6.49 | 0.026 | Significant |
Scanning speed | 3 | 2630.9 | 877.0 | 7.45 | 0.019 | Highly significant |
Hatch space | 3 | 418.4 | 139.5 | 1.19 | 0.391 | Not significant |
Error | 6 | 705.9 | 117.6 | |||
Total | 15 | 6044.1 |
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 420.2 | 140.06 | 4.46 | 0.057 | Not significant |
Scanning speed | 3 | 563.2 | 187.73 | 5.98 | 0.031 | Significant |
Hatch space | 3 | 498.2 | 166.06 | 5.29 | 0.040 | Significant |
Error | 6 | 188.4 | 31.40 | |||
Total | 15 | 1669.9 |
Table 4 ANOVA for down-skin surface roughness. Overhang angle = 45°. R2 = 88.72%
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 420.2 | 140.06 | 4.46 | 0.057 | Not significant |
Scanning speed | 3 | 563.2 | 187.73 | 5.98 | 0.031 | Significant |
Hatch space | 3 | 498.2 | 166.06 | 5.29 | 0.040 | Significant |
Error | 6 | 188.4 | 31.40 | |||
Total | 15 | 1669.9 |
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 247.39 | 82.46 | 6.18 | 0.029 | Significant |
Scanning speed | 3 | 134.05 | 44.68 | 3.35 | 0.097 | Not significant |
Hatch space | 3 | 209.65 | 69.88 | 5.24 | 0.041 | Significant |
Error | 6 | 80 | 13.33 | |||
Total | 15 | 671.10 |
Table 5 ANOVA for down-skin surface roughness. Overhang angle = 60°. R2 = 88.08%
Parameter | DF | Seq. SS | Adj. MS | F | p | Significance |
---|---|---|---|---|---|---|
Laser power | 3 | 247.39 | 82.46 | 6.18 | 0.029 | Significant |
Scanning speed | 3 | 134.05 | 44.68 | 3.35 | 0.097 | Not significant |
Hatch space | 3 | 209.65 | 69.88 | 5.24 | 0.041 | Significant |
Error | 6 | 80 | 13.33 | |||
Total | 15 | 671.10 |
Fig. 14 SEM images of down-skin surface under different overhang angles and process parameters: a 30° at 83.3 J/mm3; b 30° at 66.7 J/mm3; c 30° at 40.0 J/mm3; d 45° at 83.3 J/mm3; e 45° at 66.7 J/mm3; f 45° at 40.0 J/mm3; g 60° at 83.3 J/mm3; h 45° at 66.7 J/mm3; i 60° at 40.0 J/mm3
Fig. 16 SEM images of the down-skin surface under high VED: a 88.9 J/mm3 at 30°; b 92.6 J/mm3 at 30°; c 95.2 J/mm3 at 30°; d 88.9 J/mm3 at 60°; e 92.6 J/mm3 at 60°; f 95.2 J/mm3 at 60°
Fig. 17 3D surface morphology images of the down-skin surface under high VED: a 88.9 J/mm3 at 30°; b 92.6 J/mm3 at 30°; c 95.2 J/mm3 at 30°; d 88.9 J/mm3 at 60°; e 92.6 J/mm3 at 60°; f 95.2 J/mm3 at 60°
Fig. 18 SEM images of the down-skin surface under low VED: a 23.8 J/mm3 at 30°; b 24.7 J/mm3 at 30°; c 40.0 J/mm3 at 30°; d 23.8 J/mm3 at 60°; e 24.7 J/mm3 at 60°; f 40.0 J/mm3 at 60°
Fig. 19 3D surface morphology images of the down-skin surface under low VED: a 23.8 J/mm3 at 30°; b 24.7 J/mm3 at 30°; c 40.0 J/mm3 at 30°; d 23.8 J/mm3 at 60°; e 24.7 J/mm3 at 60°; f 40.0 J/mm3 at 60°
Fig. 20 Top surface of the sample 11 with 59.52 J/mm3: a SEM image at 30°; b 3D surface morphology at 30°; c SEM image at 60°; d 3D surface morphology at 60°
Fig. 21 Effect of contour scan on the down-skin surface morphology: a 30° without contour scan; b 30° with contour scan; c 60° without contour scan; d 60° with contour scan
Fig. 22 Evolution of pore under different VEDs and overhang angles: a 47.62 J/mm3 at 30°; b 47.62 J/mm3 at 60°; c 59.52 J/mm3 at 30°; d 59.52 J/mm3 at 60°; e 95.24 J/mm3 at 30°; f 95.24 J/mm3 at 60°
[1] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)
DOI URL |
[2] |
C. Tan, F. Weng, S. Sui, Y. Chew, G. Bi, Int. J. Mach. Tools Manuf. 170, 103804 (2021)
DOI URL |
[3] |
A. Nouri, A.R. Shirvan, Y. Li, C. Wen, J. Mater. Sci. Technol. 94, 196 (2021)
DOI URL |
[4] | E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, Addit. Manuf. 37, 101619 (2021) |
[5] |
S. Wen, C. Wang, Y. Zhou, L. Duan, Q. Wei, S. Yang, Y. Shi, Opt. Laser Technol. 116, 128 (2019)
DOI URL |
[6] |
T. Sanviemvongsak, D. Monceau, B. Macquaire, Corros. Sci. 141, 127 (2018)
DOI URL |
[7] |
A. Leon, E. Aghion, Mater. Charact. 131, 188 (2017)
DOI URL |
[8] |
J. Günther, S. Leuders, P. Koppa, T. Tröster, S. Henkel, H. Biermann, T. Niendorf, Mater. Des. 143, 1 (2018)
DOI URL |
[9] | S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, M. Beard, Int. J. Mach. Tools Manuf. 95, 97 (2015) |
[10] | Y. Yang, X. Li, M.M. Khonsari, Y. Zhu, H. Yang, Addit. Manuf. 36, 101583 (2020) |
[11] |
H. Chen, D. Gu, J. Xiong, M. Xia, J. Mater. Process. Technol. 250, 99 (2017)
DOI URL |
[12] | A. Khobzi, F. Farhang Mehr, S. Cockcroft, D. Maijer, S. L. Sing, W. Y. Yeong, Addit. Manuf. 51, 102644 (2022) |
[13] | M. Shange, I. Yadroitsava, A. du Plessis, I. Yadroitsev, 3D Print. Addit. Manuf. 9, 288 (2022) |
[14] | H. Lin, H. Tran, Y. Lo, T. Le, K. Chiu, Y. Hsu, 3D Print. Addit. Manuf. (2022). https://doi.org/10.1089/3dp.2021.0180 |
[15] | Z. Chen, X. Wu, D. Tomus, C.H.J. Davies, Addit. Manuf. 21, 91 (2018) |
[16] |
C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96, 72 (2015)
DOI URL |
[17] |
L. Wang, S. Wang, J. Wu, Opt. Laser Technol. 96, 88 (2017)
DOI URL |
[18] | Y. Tian, D. Tomus, P. Rometsch, X. Wu, Addit. Manuf. 13, 103 (2017) |
[19] |
I. Koutiri, E. Pessard, P. Peyre, O. Amlou, T.D. Terris, J. Mater. Process. Technol. 255, 536 (2018)
DOI URL |
[20] |
B. Vandenbroucke, J.P. Kruth, Rapid Prototyping J. 13, 196 (2007)
DOI URL |
[21] |
P.J. DePond, G. Gabe, S. Ly, N.P. Calta, D. Deane, S. Khairallah, M.J. Matthews, Mater. Des. 154, 347 (2018)
DOI URL |
[22] |
D. Wang, Y. Yang, Z. Yi, X. Su, Int. J. Adv. Manuf. Technol. 65, 1471 (2013)
DOI URL |
[23] | S. Feng, A.M. Kamat, S. Sabooni, Y. Pei, Virtual Phys. Prototy. 16, S66 (2021) |
[24] |
G. Strano, L. Hao, R.M. Everson, K.E. Evans, J. Mater. Process. Technol. 213, 589 (2013)
DOI URL |
[25] | E. Masiagutova, F. Cabanettes, A. Sova, M. Cici, G. Bidron, P. Bertrand, Addit. Manuf. 47, 102230 (2021) |
[26] |
Y. Bai, C. Zhao, D. Wang, H. Wang, J. Mater. Process. Technol. 299, 117328 (2022)
DOI URL |
[27] |
R. Drissi-Daoudi, V. Pandiyan, R. Log´e, S. Shevchik, G. Masinelli, H. Ghasemi-Tabasi, A. Parrilli, K. Wasmer, Virtual Phys. Prototyp. 17(2), 181 (2022)
DOI URL |
[28] |
I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Technol. 210, 1624 (2010)
DOI URL |
[29] | J. Sun, M. Guo, K. Shi, D. Gu, Mater. Sci. Addit. Manuf. 1, 11 (2022) |
[30] |
Y. Liu, Y. Yang, S. Mai, D. Wang, C. Song, Mater. Des. 87, 797 (2015)
DOI URL |
[31] |
T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, X. Chen, L. Jiang, J. Mater. Process. Technol. 266, 26 (2019)
DOI URL |
[32] |
R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Int. J. Adv. Manuf. Technol. 59, 1025 (2012)
DOI URL |
[33] |
X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, J. Mater. Process. Technol. 222, 33 (2015)
DOI URL |
[34] |
C. Guo, Z. Xu, Y. Zhou, S. Shi, G. Li, H. Lu, Q. Zhu, R.M. Ward, J. Mater. Process. Technol. 290, 117000 (2021)
DOI URL |
[35] | H. Koh, J. Moo, S. Sing, W. Yeong, Materials. 15, 1869 (2022) |
[36] |
C. Guo, S. Li, S. Shi, X. Li, X. Hu, Q. Zhu, R.M. Ward, J. Mater. Process. Technol. 285, 116788 (2020)
DOI URL |
[37] |
M. Xia, D. Gu, G. Yu, D. Dai, H. Chen, Q. Shi, Int. J. Mach. Tools Manuf. 109, 147 (2016)
DOI URL |
[38] |
M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, Int. J. Heat Mass Transf. 166, 120766 (2021)
DOI URL |
[39] |
K. Mumtaz, N. Hopkinson, Rapid Prototyping J. 15, 96 (2009)
DOI URL |
[40] |
A. Boschetto, L. Bottini, F. Veniali, J. Mater. Process. Technol. 241, 154 (2017)
DOI URL |
[41] |
Y. Li, K. Zhou, P. Tan, S.B. Tor, C.K. Chua, K.F. Leong, Int. J. Mech. Sci. 136, 24 (2018)
DOI URL |
[42] | A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J.H. Hattel, S. Scholz, Addit. Manuf. 50, 102551 (2022) |
[43] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)
DOI URL |
[44] |
J.C. Snyder, K.A. Thole, J. Manuf. Sci. Eng. 142, 071003 (2020)
DOI URL |
[45] |
E. Abele, M. Kniepkamp, Surf. Topogr.: Metrol. Prop. 3, 034007 (2015)
DOI URL |
[1] | Xiaojia Nie, Ze Chen, Yang Qi, Hu Zhang, Haihong Zhu. Spreading Behavior and Hot Cracking Mechanism of Single Tracks in High Strength Al-Cu-Mg-Mn Alloy Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1454-1464. |
[2] | Kudakwashe Nyamuchiwa, Yuan Tian, Kanwal Chadha, Lu Jiang, Thomas Dorin, Clodualdo Aranas Jr. Precipitation Behaviour at the Interface of an Additively Manufactured M789-N709 Hybrid Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1353-1370. |
[3] | Yong Zhao, Bi-Jun Xie, Jin-Long Zhang, Qin-Qiang Wang, Bin Xu, Jiang Guo, Zhu-Ji Jin, Ren-Ke Kang, Dian-Zhong Li. Effects of Surface Roughness on Interface Bonding Performance for 316H Stainless Steel in Hot-Compression Bonding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788. |
[4] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[5] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[6] | Hui Liu, Shiling Min, Menglei Jiang, Fuzhong Chu, Ying Li, Zhuoer Chen, Kai Zhang, Juan Hou, Aijun Huang. Helium Bubble Growth in He+ Ions Implanted 304L Stainless Steel Processed by Laser Powder Bed Fusion During Post-Irradiation Annealing at 600 °C [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1509-1518. |
[7] | Ling Zhang, Wen-He Liao, Ting-Ting Liu, Hui-Liang Wei, Chang-Chun Zhang. In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si Titanium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 439-452. |
[8] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
[9] | Sheng Li, Biao Cai, Ranxi Duan, Lei Tang, Zihan Song, Dominic White, Oxana V. Magdysyuk, Moataz M. Attallah. Synchrotron Characterisation of Ultra-Fine Grain TiB2/Al-Cu Composite Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 78-92. |
[10] | Yang Liu, Lei Wang, Kaiyue Yang, Xiu Song. Effects of Thermally Assisted Warm Laser Shock Processing on the Microstructure and Fatigue Property of IN718 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1645-1656. |
[11] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[12] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[13] | An-Wen Zhang, Yang Li, Sha Zhang, Fang Liu, Wei-Hong Zhang, Lian-Xu Yu, Wen-Ru Sun. Re-recognition of the Effects of Phosphorus and Boron on the γ″ and γ′ Phases in IN718 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 372-380. |
[14] | Valeria Bongiorno, Paolo Piccardo, Simone Anelli, Roberto Spotorno. Influence of Surface Finishing on High-Temperature Oxidation of AISI Type 444 Ferritic Stainless Steel Used in SOFC Stacks [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 697-711. |
[15] | Li Wang, Wei-Guo Jiang, Xiang-Wei Li, Jia-Sheng Dong, Wei Zheng, Hui Feng, Lang-Hong Lou. Effect of Surface Roughness on the Oxidation Behavior of a Directionally Solidified Ni-Based Superalloy at 1,100 °C [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 381-385. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||