Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 627-641.DOI: 10.1007/s40195-025-01820-6
Previous Articles Next Articles
X. W. Shang1,2, Z. G. Lu2, R. P. Guo3, L. Xu2()
Received:
2024-09-29
Revised:
2024-11-22
Accepted:
2024-11-25
Online:
2025-04-10
Published:
2025-02-25
Contact:
L. Xu, X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641.
Add to citation manager EndNote|Ris|BibTeX
Alloys | HIP regimes | Average heating rate (°C/min) | HIP temperature (°C) | HIP pressure (MPa) | Holding time (min) | Average cooling rate (°C/min) |
---|---|---|---|---|---|---|
H1 | STM-HIP | 7 | 880 | 120 | 180 | 7 |
H2 | STM-HIP | 7 | 940 | 120 | 180 | 7 |
H3 | STM-HIP | 7 | 960 | 120 | 180 | 7 |
H4 | STM-HIP | 7 | 1000 | 120 | 180 | 7 |
H5 | DTM-HIP | 7 | 860 → 940 | 120 | 60 → 120 | 7 |
H6 | DTM-HIP | 7 | 880 → 940 | 120 | 60 → 120 | 7 |
Table 1 HIP parameters of different temperature curves
Alloys | HIP regimes | Average heating rate (°C/min) | HIP temperature (°C) | HIP pressure (MPa) | Holding time (min) | Average cooling rate (°C/min) |
---|---|---|---|---|---|---|
H1 | STM-HIP | 7 | 880 | 120 | 180 | 7 |
H2 | STM-HIP | 7 | 940 | 120 | 180 | 7 |
H3 | STM-HIP | 7 | 960 | 120 | 180 | 7 |
H4 | STM-HIP | 7 | 1000 | 120 | 180 | 7 |
H5 | DTM-HIP | 7 | 860 → 940 | 120 | 60 → 120 | 7 |
H6 | DTM-HIP | 7 | 880 → 940 | 120 | 60 → 120 | 7 |
Fig. 2 Micro-CT images and statistical results of the alloys prepared by different HIP regimes: a-d H1-H4 of STM-HIP; e, f H5 and H6 of DTM-HIP; g maximum diameter and volume fraction of pore defects
Alloys | HIP temperatures (°C) | Average diameter of granular α (μm) | Mean thickness of platelet α (μm) | Mean length of platelet α (μm) | Proportion of α phases (vol.%) |
---|---|---|---|---|---|
H1 | 880 | 1.46 | 0.82 | 8.65 | 80.67 |
H2 | 940 | 2.40 | 1.22 | 6.70 | 81.96 |
H3 | 960 | 3.60 | 1.70 | 6.23 | 80.54 |
H4 | 1000 | 4.86 | 2.32 | 5.86 | 82.09 |
H5 | 860 → 940 | 2.24 | 1.03 | 7.41 | 82.02 |
H6 | 880 → 940 | 2.37 | 1.06 | 6.99 | 81.82 |
Table 2 Statistical results of the size, morphology, and proportion of α phase under different HIP regimes
Alloys | HIP temperatures (°C) | Average diameter of granular α (μm) | Mean thickness of platelet α (μm) | Mean length of platelet α (μm) | Proportion of α phases (vol.%) |
---|---|---|---|---|---|
H1 | 880 | 1.46 | 0.82 | 8.65 | 80.67 |
H2 | 940 | 2.40 | 1.22 | 6.70 | 81.96 |
H3 | 960 | 3.60 | 1.70 | 6.23 | 80.54 |
H4 | 1000 | 4.86 | 2.32 | 5.86 | 82.09 |
H5 | 860 → 940 | 2.24 | 1.03 | 7.41 | 82.02 |
H6 | 880 → 940 | 2.37 | 1.06 | 6.99 | 81.82 |
Fig. 6 IPF maps and texture intensity of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloys prepared by different HIP regimes: a H1; b, g H2; c H3; d H4; e, h H5; f, i H6
Fig. 9 Relationship between the HIP temperature and mechanical properties of H1-H4 alloys tested at different temperatures: a, c room temperature of 25 °C; b, d high temperature of 500 °C
Alloys | HIP regimes (°C) | Test temperatures (°C) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|---|---|
H2 | 940 | 25 | |||
500 | |||||
H5 | 860 → 940 | 25 | |||
500 | |||||
H6 | 880 → 940 | 25 | |||
500 |
Table 3 Comparison of the tensile properties of H2, H5, and H6 alloys tested at 25 °C and 500 °C
Alloys | HIP regimes (°C) | Test temperatures (°C) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|---|---|
H2 | 940 | 25 | |||
500 | |||||
H5 | 860 → 940 | 25 | |||
500 | |||||
H6 | 880 → 940 | 25 | |||
500 |
Alloys | Tβ (°C) | kHIP | σi (MPa) | Goodness of fit (R2) |
---|---|---|---|---|
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si | 1020 | 0.82 | 1757 | 0.88 |
Ti-6.5Al-1Mo-1 V-2Zr | 945 | 2.87 | 3487 | 0.99 |
Ti-6Al-4V | 1000 | 0.29 | 1096 | 0.99 |
Ti-5.5Al-3.5Sn-3.0Zr-0.7Mo-0.3Si-0.4Nb-0.4Ta | 971 | 1.63 | 2446 | 0.96 |
Table 4 Statistical data of the declining slope kHIP and intercept strength σi of several representative HIPed alloys measured at the room temperature
Alloys | Tβ (°C) | kHIP | σi (MPa) | Goodness of fit (R2) |
---|---|---|---|---|
Ti-6.5Al-3.5Mo-1.5Zr-0.3Si | 1020 | 0.82 | 1757 | 0.88 |
Ti-6.5Al-1Mo-1 V-2Zr | 945 | 2.87 | 3487 | 0.99 |
Ti-6Al-4V | 1000 | 0.29 | 1096 | 0.99 |
Ti-5.5Al-3.5Sn-3.0Zr-0.7Mo-0.3Si-0.4Nb-0.4Ta | 971 | 1.63 | 2446 | 0.96 |
[1] | G. Lütjering, J.C. Williams, Titanium (Springer, Berlin Heidelberg, 2013) |
[2] | V. N. Moiseyev, Titanium Alloys-Russian Aircraft and Aerospace Applications CRC Press (2005) |
[3] | C. Veiga, J.P. Devim, A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32, 133 (2012) |
[4] | J.C. Williams, R.R. Boyer, Metals 10, 705 (2020) |
[5] | X.Y. Zhang, M.Q. Li, H. Li, J. Luo, S.B. Su, H. Wang, Mater. Des. 31, 2851 (2010) |
[6] | F. Yin, S.T. Ma, S. Hu, Y.X. Liu, L. Hua, G.J. Cheng, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 869, 11 (2023) |
[7] | K. Wang, H.H. Li, Y. Zhou, J.F. Wang, R.L. Xin, Q. Liu, Acta Metall. Sin.-Engl. Lett. 36, 353 (2023) |
[8] | S. Lu, R. Bao, K. Wang, D. Liu, Y. Wu, B. Fei, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 690, 378 (2017) |
[9] | Y.F. Wang, X. Cheng, Y.Y. Zhu, J.K. Zhang, H. Wang, J. Mater. Sci. Technol. 35, 403 (2019) |
[10] | X.P. Yang, C.R. Liu, Mach. Sci. Technol. 3, 107 (1999) |
[11] | Q.Y. Zhao, Q.Y. Sun, S.W. Sun, Y.N. Chen, C. Wu, H. Wang, J.W. Xu, M.P. Wang, W.D. Zeng, Y.Q. Zhao, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 845, 43 (2022) |
[12] | D.Y. Pimenov, M. Mia, M.K. Gupta, A.R. Machado, I.V. Tomaz, M. Sarikaya, S. Wojciechowski, T. Mikolajczyk, W. Kaplonek, J. Mater. Res. Technol-JMRT 11, 719 (2021) |
[13] | K. Gupta, R.F. Laubscher, Proc. Inst. Mech. Eng. Part B-J Eng. Manuf. 231, 2543 (2017) |
[14] | H.V. Atkinson, S. Davies, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 31, 2981 (2000) |
[15] | C. Broeckmann, Powder Metall. 55, 176 (2012) |
[16] | R.P. Guo, L. Xu, J. Wu, R. Yang, B.Y. Zong, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 639, 327 (2015) |
[17] | R.P. Guo, L. Xu, W.X. Cheng, J.F. Lei, R. Yang, Acta Metall. Sin. 52, 842 (2016) |
[18] | S.K. Yeshanew, C.G. Bai, Q. Jia, T. Xi, Z.Q. Zhang, D.F. Li, Z.Z. Xia, R. Yang, K. Yang, Acta Metall. Sin.-Engl. Lett. 36, 1261 (2023) |
[19] | D.W. Ao, X.R. Chu, S.X. Lin, Y. Yang, J. Gao, Acta Metall. Sin.-Engl. Lett. 31, 1287 (2018) |
[20] | C. Cai, X.Y. Gao, Q. Teng, R. Kiran, J. Liu, Q.S. Wei, Y.S. Shi, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 802, 10 (2021) |
[21] | J. Wu, R.P. Guo, L. Xu, Z.G. Lu, Y.Y. Cui, R. Yang, J. Mater. Sci. Technol. 33, 172 (2017) |
[22] | L. Chang, W. Sun, Y. Cui, R. Yang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 682, 341 (2017) |
[23] | R.P. Guo, B.B. Yu, X.H. Shi, L. Xu, R. Yang, JOM 71, 3614 (2019) |
[24] | L. Jing, R.D. Fu, Y.P. Wang, L. Qiu, B. Yan, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 704, 434 (2017) |
[25] | H. Chen, C. Cao, L. Guo, H. Lin, Trans. Nonferrous Met. Soc. China 18, 1021 (2008) |
[26] | W.D. Zeng, Y.G. Zhou, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 290, 33 (2000) |
[27] | Y. Yue, L.Y. Dai, H. Zhong, X.Y. Zhang, S.X. Liang, M.Z. Ma, R.P. Liu, J. Alloy. Compd. 696, 663 (2017) |
[28] | R.P. Guo, M. Cheng, C.J. Zhang, J.W. Qiao, C. Cai, Q.J. Wang, D.S. Xu, L. Xu, R. Yang, Y.S. Shi, P.K. Liaw, Scr. Mater. 228, 115345 (2023) |
[29] | Y. Bogatov, V. Shcherbakov, D. Kovalev, A. Sychev, Inorg. Mater. 58, 1321 (2022) |
[30] | J. Zhao, K. Wang, L. Lv, G. Liu, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 840, 142932 (2022) |
[31] | Y. Zhu, X. Wu, Prog. Mater. Sci. 131, 101019 (2023) |
[32] | S.H. Kayani, N.K. Park, J. Alloy. Compd. 708, 308 (2017) |
[33] |
Y. Li, Y. Chen, J. Liu, Q. Hu, R. Yang, Sci. Rep. 6, 30611 (2016)
DOI PMID |
[34] | Y. Gu, F. Zeng, Y. Qi, C. Xia, X. Xiong, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 575, 74 (2013) |
[35] | T. Gao, H. Xue, Z. Sun, D. Retraint, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 776, 138989 (2020) |
[36] | Y. Kim, E. Kim, Y. Song, S.H. Lee, Y. Kwon, J. Alloy. Compd. 603, 207 (2014) |
[37] | G. Ruipeng, Dissertation, Northeastern University, (2018) |
[38] | L. Zhu, Y. Pan, Y. Liu, Z. Sun, X. Wang, H. Nan, M.A. Mughal, D. Lu, X. Lu, JOM 30, 697 (2023) |
[39] | Y. Chong, G. Deng, S. Gao, J. Yi, A. Shibata, N. Tsuji, Scr. Mater. 172, 77 (2019) |
[40] | G.Q. Wu, C.L. Shi, W. Sha, A.X. Sha, H.R. Jiang, Mater. Des. 46, 668 (2013) |
[41] | F.X.G. Mur, D. Rodriguez, J.A. Planell, J. Alloy. Compd. 234, 287 (1996) |
[42] |
Y. Zou, X.Z. An, R.P. Zou, Powder Technol. 361, 297 (2020)
DOI |
[43] | Z.C. Sun, S.S. Guo, H. Yang, Acta Mater. 61, 2057 (2013) |
[44] | B. Appolaire, L. Héricher, E. Aeby-Gautier, Acta Mater. 53, 3001 (2005) |
[45] | M. Qi, Q. Wang, Y.J. Ma, J. Yang, H.B. Weng, Y.D. Jia, H.M. Cao, S.S. Youssef, S.S. Huang, J.K. Qiu, J.F. Lei, R. Yang, J. Alloy. Compd. 926, 9 (2022) |
[46] | G. Spanos, R.A. Masumura, R.A. Vandermeer, M. Enomoto, Acta Metall. Mater. 42, 4165 (1994) |
[47] | R. Shi, Y. Wang, Acta Mater. 61, 6006 (2013) |
[1] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
[2] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
[3] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[4] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[5] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[6] | Yiyun Guo, Lei Wu, Yibo Shang, Chengqi Sun. Effects of Defect, Mean Stress and Lower Loading on High Cycle and Very High Cycle Fatigue Behavior of Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 435-448. |
[7] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[8] | Cheng Ren, Xiaohua Min, Sujie Zhang, Weiqiang Wang. Springback Behavior and Biocompatibility in β-Type Ti-Mo-O Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 313-326. |
[9] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[10] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[11] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[12] | Jian Zang, Jianrong Liu, Qingjiang Wang, Haibing Tan, Bohua Zhang, Xiaolin Dong, Zibo Zhao. Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 107-120. |
[13] | Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138. |
[14] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[15] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||