Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (3): 435-448.DOI: 10.1007/s40195-024-01807-9
Previous Articles Next Articles
Yiyun Guo1,2, Lei Wu3, Yibo Shang4,5, Chengqi Sun1,2()
Received:
2024-09-12
Revised:
2024-10-21
Accepted:
2024-11-11
Online:
2025-03-10
Published:
2025-01-05
Contact:
Chengqi Sun, scq@lnm.imech.ac.cn
Yiyun Guo, Lei Wu, Yibo Shang, Chengqi Sun. Effects of Defect, Mean Stress and Lower Loading on High Cycle and Very High Cycle Fatigue Behavior of Ti-6Al-4V Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 435-448.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 Geometry and size of specimen and defect under ultrasonic frequency fatigue test (unit: mm): a smooth specimen for R = − 1; b smooth specimen for R = 0.1; c schematic of surface defect
Fig. 5 Maximum stress σmax as a function of fatigue life for smooth specimens and specimens with different defect sizes for the Ti-6Al-4V alloy at R = −1 and R = 0.1. The hollow symbols indicate that the specimens do not fail at the tested loading cycles
Fig. 6 Typical fracture surface morphologies of failed smooth specimens: a and b σmax = 775 MPa, R = −1, Nf = 7.57 × 105 cyc; c and d σmax = 750 MPa, R = −1, Nf = 2.49 × 108 cyc; e and f σmax = 900 MPa, R = 0.1, Nf = 1.63 × 107 cyc; g and h σmax = 750 MPa, R = 0.1, Nf = 1.47 × 108 cyc. b, d, f and h magnified images of RA in a, c, e and g, respectively
Fig. 7 Typical fracture surface morphologies of failed specimens with surface defect: a and b specimens with defect-A, σmax = 450 MPa, R = −1, Nf = 1.44 × 105 cyc; c and d specimens with defect-B, σmax = 600 MPa, R = −1, Nf = 1.57 × 105 cyc; e and f specimens with defect-A, σmax = 475 MPa, R = 0.1, Nf = 8.99 × 106 cyc; g and h specimens with defect-A, σmax = 600 MPa, R = 0.1, Nf = 8.76 × 104 cyc; i and j specimens with defect-B, σmax = 550 MPa, R = 0.1, Nf = 1.33 × 108 cyc; k and l specimens with defect-B, σmax = 700 MPa, R = 0.1, Nf = 8.78 × 104 cyc. b, d, f, h, j and l magnified images around defects in a, c, e, g, i and k, respectively
σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) |
---|---|---|---|---|---|
800 | 2.20 × 105 | 775 | 7.57 × 105 | 750 | 8.48 × 105 |
800 | 2.45 × 105 | 775 | 1.93 × 107 | 750 | 1.83 × 105 |
775 | 2.77 × 105 | 750 | 1.22 × 108 | 750* | 1.04 × 109 |
775 | 2.07 × 105 | 750 | 8.23 × 105 | 750* | 1.07 × 109 |
775 | 2.34 × 105 | 750 | 1.19 × 108 | 750* | 1.05 × 109 |
775 | 2.20 × 105 | 750 | 2.49 × 108 |
Table 1 Experimental results of smooth specimens at R = −1 under constant amplitude loading
σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) |
---|---|---|---|---|---|
800 | 2.20 × 105 | 775 | 7.57 × 105 | 750 | 8.48 × 105 |
800 | 2.45 × 105 | 775 | 1.93 × 107 | 750 | 1.83 × 105 |
775 | 2.77 × 105 | 750 | 1.22 × 108 | 750* | 1.04 × 109 |
775 | 2.07 × 105 | 750 | 8.23 × 105 | 750* | 1.07 × 109 |
775 | 2.34 × 105 | 750 | 1.19 × 108 | 750* | 1.05 × 109 |
775 | 2.20 × 105 | 750 | 2.49 × 108 |
σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) |
---|---|---|---|---|---|
900 | 1.43 × 107 | 850 | 2.81 × 107 | 750 | 7.34 × 107 |
900 | 1.63 × 107 | 800 | 6.19 × 107 | 750 | 8.89 × 107 |
850 | 2.73 × 107 | 750 | 1.47 × 108 | 700 | 2.67 × 108 |
600* | 1.12 × 109 |
Table 2 Experimental results of smooth specimens at R = 0.1 under constant amplitude loading
σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) | σmax (MPa) | Nf (cyc) |
---|---|---|---|---|---|
900 | 1.43 × 107 | 850 | 2.81 × 107 | 750 | 7.34 × 107 |
900 | 1.63 × 107 | 800 | 6.19 × 107 | 750 | 8.89 × 107 |
850 | 2.73 × 107 | 750 | 1.47 × 108 | 700 | 2.67 × 108 |
600* | 1.12 × 109 |
Specimens with surface defect-A | Specimens with surface defect-B | ||||
---|---|---|---|---|---|
σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) | σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) |
450 | 1.44 × 105 | 229.75 | 600 | 1.57 × 105 | 77.25 |
400 | 1.66 × 106 | 236.23 | 550 | 1.13 × 105 | 113.20 |
400 | 3.96 × 105 | 209.29 | 500 | 2.13 × 105 | 113.67 |
350 | 7.92 × 105 | 255.37 | 500 | 1.50 × 105 | 120.51 |
325 | 3.83 × 107 | 233.62 | 485 | 1.94 × 105 | 111.92 |
325 | 9.87 × 105 | 254.17 | 475* | 1.03 × 109 | - |
300* | 1.02 × 109 | - | 450* | 1.08 × 109 | - |
300* | 1.09 × 109 | - |
Table 3 Maximum stress σmax, fatigue life Nf and defect size $\sqrt{\text{area}}$ of specimens with defect at R = −1
Specimens with surface defect-A | Specimens with surface defect-B | ||||
---|---|---|---|---|---|
σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) | σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) |
450 | 1.44 × 105 | 229.75 | 600 | 1.57 × 105 | 77.25 |
400 | 1.66 × 106 | 236.23 | 550 | 1.13 × 105 | 113.20 |
400 | 3.96 × 105 | 209.29 | 500 | 2.13 × 105 | 113.67 |
350 | 7.92 × 105 | 255.37 | 500 | 1.50 × 105 | 120.51 |
325 | 3.83 × 107 | 233.62 | 485 | 1.94 × 105 | 111.92 |
325 | 9.87 × 105 | 254.17 | 475* | 1.03 × 109 | - |
300* | 1.02 × 109 | - | 450* | 1.08 × 109 | - |
300* | 1.09 × 109 | - |
Specimens with surface defect-A | Specimens with surface defect-B | ||||
---|---|---|---|---|---|
σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) | σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) |
600 | 8.76 × 104 | 248.47 | 700 | 8.78 × 104 | 120.72 |
550 | 1.13 × 105 | 234.37 | 675 | 7.54 × 104 | 114.46 |
500 | 3.89 × 105 | 230.21 | 675 | 4.43 × 106 | 97.33 |
500 | 4.67 × 107 | 167.18 | 650 | 1.59 × 108 | 70.90 |
525 | 7.06 × 106 | 202.60 | 625 | 1.13 × 107 | 82.75 |
475 | 8.99 × 106 | 263.02 | 600 | 3.41 × 107 | 105.05 |
450* | 1.07 × 109 | - | 550 | 1.33 × 108 | 102.20 |
500* | 1.02 × 109 | - |
Table 4 Maximum stress σmax, fatigue life Nf and defect size $\sqrt{\text{area}}$ of specimens with defect at R = 0.1
Specimens with surface defect-A | Specimens with surface defect-B | ||||
---|---|---|---|---|---|
σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) | σmax (MPa) | Nf (cyc) | $\sqrt{\text{area}}$ (μm) |
600 | 8.76 × 104 | 248.47 | 700 | 8.78 × 104 | 120.72 |
550 | 1.13 × 105 | 234.37 | 675 | 7.54 × 104 | 114.46 |
500 | 3.89 × 105 | 230.21 | 675 | 4.43 × 106 | 97.33 |
500 | 4.67 × 107 | 167.18 | 650 | 1.59 × 108 | 70.90 |
525 | 7.06 × 106 | 202.60 | 625 | 1.13 × 107 | 82.75 |
475 | 8.99 × 106 | 263.02 | 600 | 3.41 × 107 | 105.05 |
450* | 1.07 × 109 | - | 550 | 1.33 × 108 | 102.20 |
500* | 1.02 × 109 | - |
σmax (MPa) | Step | Nf (cyc) | σmax (MPa) | Step | Nf (cyc) |
---|---|---|---|---|---|
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.97 × 105 | 2 | 1.40 × 105 | ||
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.73 × 105 | 2 | 1.70 × 105 | ||
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.99 × 105 | 2 | 3.70 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 1.10 × 105 | 2 | 6.62 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 2.20 × 105 | 2 | 5.72 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 3.04 × 107 | 2 | 1.57 × 105 | ||
375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 | 375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 |
2 | 1.0 × 107 | 2 | 1.0 × 107 | ||
3 | 1.0 × 107 | 3 | 1.0 × 107 | ||
4 | 1.0 × 107 | 4 | 1.0 × 107 | ||
5 | 2.03 × 105 | 5 | 1.68 × 105 | ||
375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 | 725 → 775 | 1 | 1.0 × 107 |
2 | 1.0 × 107 | 2 | 1.41 × 105 | ||
3 | 1.0 × 107 | 725 → 775 | 1 | 5.0 × 108 | |
4 | 1.0 × 107 | 2 | 9.40 × 105 | ||
5 | 2.39 × 105 |
Table 5 Loading information of smooth specimens at R = −1 under variable amplitude loadings
σmax (MPa) | Step | Nf (cyc) | σmax (MPa) | Step | Nf (cyc) |
---|---|---|---|---|---|
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.97 × 105 | 2 | 1.40 × 105 | ||
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.73 × 105 | 2 | 1.70 × 105 | ||
675 → 775 | 1 | 1.0 × 107 | 675 → 775 | 1 | 5.0 × 108 |
2 | 2.99 × 105 | 2 | 3.70 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 1.10 × 105 | 2 | 6.62 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 2.20 × 105 | 2 | 5.72 × 105 | ||
375 → 775 | 1 | 5.0 × 108 | 700 → 775 | 1 | 1.0 × 107 |
2 | 3.04 × 107 | 2 | 1.57 × 105 | ||
375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 | 375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 |
2 | 1.0 × 107 | 2 | 1.0 × 107 | ||
3 | 1.0 × 107 | 3 | 1.0 × 107 | ||
4 | 1.0 × 107 | 4 | 1.0 × 107 | ||
5 | 2.03 × 105 | 5 | 1.68 × 105 | ||
375 → 475 → 575 → 675 → 775 | 1 | 1.0 × 107 | 725 → 775 | 1 | 1.0 × 107 |
2 | 1.0 × 107 | 2 | 1.41 × 105 | ||
3 | 1.0 × 107 | 725 → 775 | 1 | 5.0 × 108 | |
4 | 1.0 × 107 | 2 | 9.40 × 105 | ||
5 | 2.39 × 105 |
σmax (MPa) | Step | Nf (cyc) | σmax (MPa) | Step | Nf (cyc) |
---|---|---|---|---|---|
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 1.64 × 108 | 2 | 6.42 × 107 | ||
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 7.03 × 107 | 2 | 8.95 × 107 | ||
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 7.33 × 107 | 2 | 1.03 × 108 | ||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 7.97 × 107 | ||||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 4.12 × 107 | ||||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 8.56 × 107 |
Table 6 Loading information of smooth specimens at R = 0.1 under variable amplitude loadings
σmax (MPa) | Step | Nf (cyc) | σmax (MPa) | Step | Nf (cyc) |
---|---|---|---|---|---|
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 1.64 × 108 | 2 | 6.42 × 107 | ||
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 7.03 × 107 | 2 | 8.95 × 107 | ||
650 → 750 | 1 | 1.0 × 107 | 550 → 750 | 1 | 1.0 × 107 |
2 | 7.33 × 107 | 2 | 1.03 × 108 | ||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 7.97 × 107 | ||||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 4.12 × 107 | ||||
450 → 750 | 1 | 1.0 × 107 | |||
2 | 8.56 × 107 |
Fig. 9 Typical fracture surface morphologies of failed specimens under variable amplitude loadings: a and b σmax: 375 MPa (5.0 × 108 cyc) → 775 MPa (3.04 × 107 cyc, failure), R = −1; c and d σmax: 650 MPa (1.0 × 107 cyc) → 750 MPa (7.03 × 107 cyc, failure), R = 0.1. b and d Magnified images of crack initiation region in a and c, respectively
Fig. 10 Maximum stress as a function of fatigue life of smooth specimens under continuous loadings and intermittent loadings at R = −1. The hollow symbols indicate that the specimens do not fail at the tested loading cycles
Fig. 12 EBSD results of the microstructure and damage evolution for the dog-bone shaped specimens subjected to 3000 cyc at the maximum stress of 775 MPa. a1-a3 and b1-b3 BC maps with twin, IPF and KAM map of the specimen at longitudinal section and transverse section for R = 0.1, respectively. c1-c3 and d1-d3 BC map with twin, IPF and KAM map of the specimen at longitudinal section and transverse section for R = −1, respectively
Fig. 13 Residual stresses on the minimum cross-section of specimens before and after a sequence of lower stress amplitude fatigue test at R = −1: a circumferential direction; b axial direction
[1] | I. Inagaki, T. Takechi, Y. Shirai, N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel & Sumitomo Metal Technical Report 2014, pp. 22-27 |
[2] | I.V. Gorynin, Mater. Sci. Eng. A 263, 112 (1999) |
[3] | F.A. Anene, C.N.A. Jaafar, I. Zainol, M.A.A. Hanim, M.T. Suraya, Proc. Inst. Mech. Eng. Pt. C: J. Mech. Eng. Sci. 235, 3792 (2021) |
[4] | J.G. Ferrero, J. Mater. Eng. Perform. 14, 691 (2005) |
[5] | Z.Y. Huang, H.Q. Liu, H.M. Wang, D. Wagner, M.K. Khan, Q.Y. Wang, Int. J. Fatigue 93, 232 (2016) |
[6] | W. Li, H.Q. Zhao, A. Nehila, Z.Y. Zhang, T. Sakai, Int. J. Fatigue 104, 342 (2017) |
[7] | G. Li, L. Ke, X.C. Ren, C.Q. Sun, Int. J. Fatigue 166, 107299 (2023) |
[8] | X.L. Liu, C.Q. Sun, Y.S. Hong, Int. J. Fatigue 92, 434 (2016) |
[9] | X.N. Pan, H. Su, C.Q. Sun, Y.S. Hong, Int. J. Fatigue 115, 67 (2018) |
[10] | M.R. Bache, C. Bradshaw, W. Voice, Mater. Sci. Eng. A 354, 199 (2003) |
[11] | C. Bathias, A. Pineau, Fatigue of Materials and Structures (John Wiley & Sons, Inc., 2013) |
[12] | S.K. Bhaumik, M. Sujata, M.A. Venkataswamy, Eng. Fail. Anal. 15, 675 (2008) |
[13] | S. Wiryolukito, Appl. Mech. Mater. 660, 593 (2014) |
[14] | A. Lara, I. Picas, D. Casellas, J. Mater. Process. Technol. 213, 1908 (2013) |
[15] | J. Sun, W.J. Peng, C.Q. Sun, Eng. Fract. Mech. 272, 108721 (2022) |
[16] | W.Q. Chi, W.J. Wang, W. Xu, G. Li, X. Chen, C.Q. Sun, Eng. Fract. Mech. 259, 108136 (2022) |
[17] | W.Q. Chi, W.J. Wang, Y. Li, W. Xu, C.Q. Sun, Theor. Appl. Fract. Mech. 119, 103380 (2022) |
[18] | M.C. Ding, Y.L. Zhang, H.T. Lu, Int. J. Fatigue 139, 105793 (2020) |
[19] | G. Li, C.Q. Sun, J. Mater. Sci. Technol. 122, 128 (2022) |
[20] | H. Wu, W.Q. Chi, W. Xu, W.J. Wang, C.Q. Sun, Eng. Fract. Mech. 276, 108940 (2022) |
[21] | S. Mall, T. Nicholas, T.W. Park, Int. J. Fatigue 25, 1109 (2003) |
[22] | T. Nicholas, D.C. Maxwell, Evolution and effects of damage in Ti-6Al-4V under high cycle fatigue. Progress in Mechanical Behaviour of Materials Proceedings of ICM-8, (Edited by F. Ellyin, and J.W. Provan,) Vol. III, pp.1161-1166. |
[23] | H.J. Gough, The Fatigue of Metals (Scott, Greenwood, 1924) |
[24] | H. Mayer, C. Ede, J.E. Allison, Int. J. Fatigue 27, 129 (2005) |
[25] | M. Nakajima, J.W. Jung, Y. Uematsu, K. Tokaji, Key Eng. Mater. 345, 235 (2007) |
[26] | T.J. Dolan, F.E. Richart, C.E. Work, Proc. ASTM 49, 646 (1949) |
[27] | J. Goodman, Mechanics Applied to Engineering (Longmans, Green, 1919) |
[28] | H. Gerber, Bestimm. der zuläss. Span. eisen-konstr. 6, 10 (1874) |
[29] | H. Ghadimi, A.P. Jirandehi, S. Nemati, S.M. Guo, Fatigue. Fract. Eng. Mater. Struct. 44, 3517 (2021) |
[30] | C.Q. Sun, Q.Y. Song, Metals 8, 811 (2018) |
[31] | Y. Furuya, E. Takeuchi, Mater. Sci. Eng. A 598, 135 (2014) |
[32] | X.L. Liu, C.Q. Sun, Y.S. Hong, Mater. Sci. Eng. A 622, 228 (2015) |
[33] | M. Fitzka, H. Mayer, Int. J. Fatigue 91, 363 (2016) |
[34] | C.Q. Sun, Q.Y. Song, Y.P. Hu, Y.J. Wei, Int. J. Fatigue 117, 9 (2018) |
[35] | S. Xu, Dissertation, Université de Lorraine, 2017. |
[36] | K. Tanaka, T. Mura, J. Appl. Mech. 48, 97 (1981) |
[37] | W.J. Evans, M.R. Bache, Int. J. Fatigue 16, 443 (1994) |
[38] | J. Everaerts, B. Verlinden, M. Wevers, J. Microsc. 267, 57 (2017) |
[39] | D.F. Neal, P.A. Blenkinsop, Acta Metall. 24, 59 (1976) |
[40] | C.Q. Sun, Y.Q. Li, R.X. Huang, L. Wang, J.L. Liu, L.L. Zhou, G.H. Duan, Mater. Sci. Eng. A 798, 140265 (2020) |
[41] | C.J. Szczepanski, S.K. Jha, J.M. Larsen, J.W. Jones, Metall. Mater. Trans. A 39, 2841 (2008) |
[1] | Chunhui Wang, Lei Guo, Rui Li, Qing Peng. Atomistic Insights into the Irradiation Resistance of Co-Free High Entropy Alloy FeMnNiCr [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1657-1666. |
[2] | Rui Li, Lei Guo, Yu Liu, Qingsong Xu, Qing Peng. Irradiation Resistance of CoCrCuFeNi High Entropy Alloy under Successive Bombardment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1482-1492. |
[3] | Peng Zhang, Ming Chen, Qiang Zhu, Linfu Zhang, Guohua Fan, Heyong Qin, Qiang Tian. Micro Defects Evolution of Nickel-Based Single Crystal Superalloys during Shear Deformation: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2089-2099. |
[4] | Xiangchen Meng, Yuming Xie, Xiaotian Ma, Mingyang Liang, Xiaoyang Peng, Shiwei Han, Lei Kan, Xin Wang, Sihao Chen, Yongxian Huang. Towards Friction Stir Remanufacturing of High-Strength Aluminum Components [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102. |
[5] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[6] | Junwei Xie, Haokai Dong, Yuxiu Hao, Zhongding Fan, Chang-An Wang. Exploring the Formation Mechanism of Deformation Twins in CrMnFeCoNi High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1275-1280. |
[7] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[8] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[9] | Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350. |
[10] | Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12. |
[11] | Xiao Wang, Fei Lv, Li-Da Shen, Hui-Xin Liang, De-Qiao Xie, Zong-Jun Tian. Influence of Island Scanning Strategy on Microstructures and Mechanical Properties of Direct Laser-Deposited Ti-6Al-4V Structures [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1173-1180. |
[12] | Qiao J.C., Chen Y.H., Lyu G.J., Song K.K., Pelletier J.M., Yao Y.. Mechanical Relaxation of a Ti36.2Zr30.3Cu8.3Fe4Be21.2 Bulk Metallic Glass: Experiments and Theoretical Analysis [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 726-732. |
[13] | Krzysztof Siemek, Mirosław Kulik, Marat Eseev, Mirosław Wróbel, Andrey Kobets, Oleg Orlov, Alexey Sidorin. Surface and Subsurface Defects Studies of Dental Alloys Exposed to Sandblasting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1181-1194. |
[14] | Lei Zhang, Tao He, Yu Bai, Fang-Li Yu, Wei Fan, Yu-Shan Ma, Zhan-Dong Chang, Hai-Bo Liu, Ben-Qiang Li. Velocity and Temperature of In-Flight Particles and Its Significance in Determining the Microstructure and Mechanical Properties of TBCs [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1269-1280. |
[15] | Yue Yu, Ben Xu, Hao Chen, Zhi-Gang Yang, Chi Zhang. Solubility and Anisotropic Migration Behaviors of Helium in bcc Iron Under Strain [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 199-207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||