Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1984-1992.DOI: 10.1007/s40195-024-01729-6
Previous Articles Next Articles
Shushen Guo1, Yanhui Li1(), Yibing Zhang2, Lu Yang2, Wei Zhang1(
)
Received:
2024-01-10
Revised:
2024-03-20
Accepted:
2024-03-20
Online:
2024-11-10
Published:
2024-07-10
Contact:
Yanhui Li, yhli@dlut.edu.cn;
Wei Zhang, wzhang@dlut.edu.cnShushen Guo, Yanhui Li, Yibing Zhang, Lu Yang, Wei Zhang. Reduction of High-Frequency Core Loss of a Fe77.2Si11B8.5Cu0.8Nb2.5 Soft Magnetic Nanocrystalline Alloy by Minor Alloying[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1984-1992.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Tx1 (K) | ΔT (K) | Toa (K) | Dα-Fe (nm) | Vα-Fe (%) | Bs (T) | Hc (A/m) | μe, 10 kHz | μe, 100 kHz | Pcv, 0.2 T/100 kHz (kW/m3) | ρe (μΩ cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Base alloy | 756 | 175 | 863 | 14.3 ± 0.4 | 66.2 ± 2.0 | 1.43 ± 0.01 | 2.5 ± 0.5 | 27,100 | 18,000 | 497 ± 10.6 | 100 ± 1.0 |
M = Co | 760 | 183 | 833 | 14.7 ± 0.6 | 68.2 ± 3.1 | 1.48 ± 0.02 | 2.2 ± 0.7 | 27,600 | 16,800 | 443 ± 12.3 | 106 ± 1.6 |
M = Al | 760 | 188 | 833 | 10.4 ± 0.3 | 63.0 ± 2.2 | 1.34 ± 0.01 | 0.8 ± 0.3 | 27,400 | 18,000 | 350 ± 8.5 | 114 ± 2.3 |
M = Mo | 783 | 191 | 863 | 10.2 ± 0.5 | 64.6 ± 1.9 | 1.30 ± 0.01 | 1.0 ± 0.2 | 26,700 | 17,200 | 364 ± 15.2 | 115 ± 3.2 |
Table 1 Tx1, ΔT, and Toa of melt-spun base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 alloys, and Dα-Fe, Vα-Fe, Bs, Hc, μe at 10 kHz and 100 kHz, Pcv at 0.2 T/100 kHz, and ρe of the alloys after annealing at Toa
Alloy | Tx1 (K) | ΔT (K) | Toa (K) | Dα-Fe (nm) | Vα-Fe (%) | Bs (T) | Hc (A/m) | μe, 10 kHz | μe, 100 kHz | Pcv, 0.2 T/100 kHz (kW/m3) | ρe (μΩ cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
Base alloy | 756 | 175 | 863 | 14.3 ± 0.4 | 66.2 ± 2.0 | 1.43 ± 0.01 | 2.5 ± 0.5 | 27,100 | 18,000 | 497 ± 10.6 | 100 ± 1.0 |
M = Co | 760 | 183 | 833 | 14.7 ± 0.6 | 68.2 ± 3.1 | 1.48 ± 0.02 | 2.2 ± 0.7 | 27,600 | 16,800 | 443 ± 12.3 | 106 ± 1.6 |
M = Al | 760 | 188 | 833 | 10.4 ± 0.3 | 63.0 ± 2.2 | 1.34 ± 0.01 | 0.8 ± 0.3 | 27,400 | 18,000 | 350 ± 8.5 | 114 ± 2.3 |
M = Mo | 783 | 191 | 863 | 10.2 ± 0.5 | 64.6 ± 1.9 | 1.30 ± 0.01 | 1.0 ± 0.2 | 26,700 | 17,200 | 364 ± 15.2 | 115 ± 3.2 |
Fig. 2 Changes in Bs and Hc of base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 (M = Co, Al, Mo) alloy ribbons as a function of Ta a, Bs, Hc b and frequency dependence of μe c of the alloys after annealing at Toa
Fig. 3 Frequency a and maximum external field b dependences of Pcv of base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 (M = Co, Al, Mo) alloy cores after annealing at Toa. Inset in b shows the fitting exponent c
Fig. 4 XRD patterns (right showing partially enlarged peaks with fitting curves) a, Dα-Fe and Vα-Fe b of base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 (M = Co, Al, Mo) alloys after annealing at Toa
Fig. 5 Bright-field TEM images inset with corresponding SAED patterns and grain size distributions with normal fitting a-d and high-resolution TEM images e, f of base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 (M = Co, Al, Mo) alloys after annealing at Toa. a, e Base alloy; b M = Co; c, f M = Al; d M = Mo
Fig. 6 Frequency dependences of separated losses of base alloy a, and separated Pec b and Pex c of base and Fe75.2Si11B8.5Cu0.8Nb2.5M2 alloy (M = Co, Al, Mo) alloy cores after annealing at Toa
Fig. 7 Electrical resistivity of based and Fe75.2Si11B8.5Cu0.8Nb2.5M2 (M = Co, Al, Mo) alloys in melt-spun and annealed states along with calculated resistivity for α-Fe a, δ, ΔHmix, and Sconf b, and comparison of Pec, Ptot, and ρe of the nanocrystalline alloys c
[1] | Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988) |
[2] | G. Herzer, IEEE T. Magn. 26, 1397 (1990) |
[3] | G. Herzer, Acta Mater. 61, 718 (2013) |
[4] | J. Zhou, J. You, K. Qiu, J. Appl. Phys. 132, 040702 (2022) |
[5] |
J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Science 362, 418 (2018)
DOI |
[6] | K. Yao, L. Shi, S. Chen, Y. Shao, N. Chen, J. Jia, Acta Phys. Sin. -Ch. Ed. 67, 016101 (2018) |
[7] | F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Mater. Today Adv. 4, 100027 (2019) |
[8] | Y.H. Ding, X. Liu, S.S. Zhao, Y. Long, R.C. Ye, Y.Q. Chang, F.R. Wan, Acta Metall. Sin. -Engl. Lett. 20, 327 (2007) |
[9] | C.C. Zhao, A. Inoue, F.L. Kong, J.Y. Zhang, C.J. Chen, B.L. Shen, F. Al-Marzouki, A.L. Greer, J. Alloys Compd. 843, 155917 (2020) |
[10] | L. Wu, Y. Li, X. Jia, A. He, W. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 235 (2022) |
[11] | B. Zang, L. Song, R. Parsons, J. Shen, M. Gao, Y. Zhang, J. Huo, Y. Sun, F. Li, K. Suzuki, J. Wang, W. Wang, Sci. China Phys. Mech. 66, 256111 (2023) |
[12] | Y. Cai, B. Lin, Y. Wang, R. Umetsu, D. Liang, S. Qu, Y. Zhang, J. Wang, J. Shen, J. Mater. Sci. Technol. 180, 141 (2024) |
[13] | Y. Geng, H. Ding, D. Wang, Z. Zhang, H. Ju, L. Yu, J. Xu, Acta Metall. Sin. -Engl. Lett. 33, 313 (2020) |
[14] | K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 74, 3316 (1993) |
[15] | M.A. Willard, D.E. Laughlin, M.E. Mchenry, D. Thoma, K. Sickafus, J.O. Cross, V.G. Harris, J. Appl. Phys. 84, 6773 (1998) |
[16] | A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, Mater. Trans. 50, 204 (2009) |
[17] | C. Liu, A. Inoue, F.L. Kong, E. Zanaeva, A. Bazlov, A. Churyumov, S.L. Zhu, F. Al-Marzouki, R.D. Shull, J. Non-Cryst. Solids 554, 120606 (2021) |
[18] | C. Dong, A. Inoue, X.H. Wang, F.L. Kong, E.N. Zanaeva, F. Wang, A.I. Bazlov, S.L. Zhu, Q. Li, J. Non-Cryst. Solids 500, 173 (2018) |
[19] | E.N. Zanaeva, A.I. Bazlov, D.A. Milkova, A.Y. Churyumov, A. Inoue, N.Y. Tabachkova, F. Wang, F.L. Kong, S.L. Zhu, J. Non-Cryst. Solids, 526, 119702 (2019) |
[20] | L. Duan, K. Wang, E. Wang, P. Jia, Acta Metall. Sin. -Engl. Lett. 34, 1163 (2021) |
[21] | F. Shen, B. Zang, L. Song, J. Huo, Y. Zhang, J. Wang, Scr. Mater. 236, 115666 (2023) |
[22] | A. Wang, C. Zhao, A. He, H. Men, C. Chang, X. Wang, J. Alloys Compd. 656, 729 (2016) |
[23] | M.A. Willard, T. Francavilla, V.G. Harris, J. Appl. Phys. 97, 10F502 (2005) |
[24] | Z. Li, K. Yao, D. Li, X. Ni, Z. Lu, Prog. Nat. Sci. -Mater. 27, 588 (2017) |
[25] | M. Jiang, M. Cai, J. Zhou, S. Di, X. Li, Q. Luo, B. Shen, Mater. Today Nano 22, 100307 (2023) |
[26] | V. Degeorge, S. Shen, P. Ohodnicki, M. Andio, M.E. Mchenry, J. Electron. Mater. 43, 96 (2014) |
[27] | K. Pekala, M. Pekala, I. Skorvánek, J. Non-Cryst. Solids 347, 27 (2004) |
[28] | M. Xiao, Y. Yang, Z. Zheng, X. Liu, Q. Zhou, Z. Qiu, D. Zeng, J. Non-Cryst. Solids 546, 120294 (2020) |
[29] | T. Luo, J. Xu, G. Wang, W. Cai, Y. Yang, J. Magn. Magn. Mater. 505, 166714 (2020) |
[30] | H. Duan, Z. Wang, Y. Jia, Mater. Res. Bull. 111, 289 (2019) |
[31] | V.B. Rajkumar, K.C.H. Kumar, J. Alloys Compd. 611, 303 (2014) |
[32] | P. Allia, M. Baricco, P. Tiberto, F. Vinai, J. Appl. Phys. 74, 3137 (1993) |
[33] | Y. Cao, F. Yang, J. Li, A. He, A. Wang, H. Xiao, Y. Dong, X. Liu, B. Zhang, Y. Han, J. Magn. Magn. Mater. 526, 167691 (2021) |
[34] | B. Zhang, F. Yang, A. He, H. Xiao, Y. Dong, J. Li, Y. Han, Metals-Basel 11, 20 (2021) |
[35] | F. Wan, A. He, J. Zhang, J. Song, A. Wang, C. Chang, X. Wang, J. Electron. Mater. 45, 4913 (2016) |
[36] | M. Ohta, Y. Yoshizawa, J. Magn. Magn. Mater. 321, 2220 (2009) |
[37] | X. Li, J. Zhou, L. Shen, B. Sun, H. Bai, W. Wang, Adv. Mater. 35, 2205863 (2022) |
[38] | G. Bertotti, F. Fiorillo, G.P. Soardo, IEEE T. Magn. 23, 3520 (1987) |
[39] | P. Fu, J. Shi, R. Shi, Y. Zhang, J. Qi, Y. Yang, Mater. Today Commun. 36, 106685 (2023) |
[40] | L. Petrescu, M. Petrescu, E. Cazacu, C. Constantinescu, Materials 14, 7745 (2021) |
[41] | O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36, 2183 (2001) |
[42] | L. Pan, Y. Li, M. Cheng, S. Ma, X. Duan, T. Wada, H. Kato, W. Zhang, Intermetallics 166, 108179 (2024) |
[43] | Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008) |
[44] | J.M. Ziman, Philos. Mag. 6, 1013 (1961) |
[45] | M. Zhu, M. Zhang, L. Yao, R. Nan, Z. Jian, F. Chang, Vacuum 163, 368 (2019) |
[46] | C.W. Nan, Phys. Rev. B 63, 176201 (2001) |
[1] | Jie Lu, Yanhui Li, Shuang Ma, Wanping Li, Feng Bao, Zhengwang Zhu, Qiaoshi Zeng, Haifeng Zhang, Man Yao, Wei Zhang. Novel Soft Magnetic Co-Based Ternary Co-Er-B Bulk Metallic Glasses [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1633-1642. |
[2] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[3] | Li-Cheng Wu, Yan-Hui Li, Xing-Jie Jia, Ai-Na He, Wei Zhang. Effects of Ribbon Thickness on Structure and Soft Magnetic Properties of a High-Cu-Content FeBCuNb Nanocrystalline Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 235-242. |
[4] | Chuang-Shi Feng, Tian-Wei Lu, Tian-Li Wang, Man-Zhen Lin, Junhua Hou, Wenjun Lu, Wei-Bing Liao. A Novel High-Entropy Amorphous Thin Film with High Electrical Resistivity and Outstanding Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1537-1545. |
[5] | Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390. |
[6] | ZHANG Shengliang Nanjing University,Nanjing,ChinaSUMIYAMA Kenji NAKAMURA Yoji Kyoto University,Japan. PREPARATION OF AMORPHOUS Ti-Pd ALLOYS AND THEIR PHYSICAL PROPERTIES [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(12): 426-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||