Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (3): 467-483.DOI: 10.1007/s40195-023-01560-5
Previous Articles Next Articles
Jing-Peng Xiong1, Yi-Qi Zeng1,2, Jin-Long Liu1, Wei-Cheng Wang1, Lan Luo1,2, Yong Liu1()
Received:
2022-11-30
Revised:
2023-02-20
Accepted:
2023-03-04
Online:
2024-03-10
Published:
2023-05-10
Contact:
Yong Liu, Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Atomic structures of Mg(0001)/La2O3(0001) and Mg(0001)/GR interfaces with different terminations and coordination types: a the La-terminated, b the O1-terminated, c the O2-terminated
Interface structure | Termination and coordination type | Wsep (J/m2) |
---|---|---|
La2O3(0001)/Mg(0001) | La-HB | 0.406 |
La-TB | 0.401 | |
O1-H | 3.895 | |
O1-TB | 3.958 | |
O2-HB | 6.873 | |
O2-TB | 9.462 | |
La2O3(0001)/GR(0001) | La-B | 2.786 |
La-TH | 6.322 | |
O1-B | 4.196 | |
O1-TH | 5.728 | |
O2-B | 10.883 | |
O2-TH | 10.898 |
Table 1 Work of separation (Wsep) predicted by the full relaxation calculations
Interface structure | Termination and coordination type | Wsep (J/m2) |
---|---|---|
La2O3(0001)/Mg(0001) | La-HB | 0.406 |
La-TB | 0.401 | |
O1-H | 3.895 | |
O1-TB | 3.958 | |
O2-HB | 6.873 | |
O2-TB | 9.462 | |
La2O3(0001)/GR(0001) | La-B | 2.786 |
La-TH | 6.322 | |
O1-B | 4.196 | |
O1-TH | 5.728 | |
O2-B | 10.883 | |
O2-TH | 10.898 |
Fig. 4 Total charge density contours of a the Mg(0001)/La2O3(0001) (O2-TB) and b the La2O3(0001)/GR(O2-TH). The differential charge density distributions of c the Mg(0001)/La2O3(0001) (O2-TB) and d the La2O3(0001)/GR (O2-TH). The dashed lines denote the locations of the interfaces
Fig. 7 OM images of a A0, b S1, and c S2 with the grain sizes distribution shown inset, respectively. SEM-SE images and EDS analysis of d A0, e S1, and f S2. The characterized planes of the sample were shown on the left side of each group figure
Figure 10d a Low magnification TEM of the S2 for a large GNS (white solid-line arrows) and nanoparticles (red dashed arrow) captured, the inset shows SAED in the white dashed-box area. b HRTEM image of the white solid-line box area in a, white dashed-lines indicate the interfaces of GNS and Mg matrix, and red dashed lines indicate the interfaces of La2O3 and Mg matrix. The insets show the enlarged view of specified areas. c, e Corresponding FFT patterns of the white and red solid-line box area in b, respectively. d, f IFFT images of the La2O3/α-Mg interface and La2O3/GNS interface, respectively. The insets in d show the FFT patterns of α-Mg (top) and La2O3 (bottom)
Fig. 11 TEM micrographs of the Mg/La2O3 interface: a high magnification image of the area near GNS. b enlarged view of the white solid-line box area in a, the inset shows that the corresponding Moiré periodicity was measured to be 1.069 nm. c corresponding FFT pattern of b. d IFFT patterns of c using the reflection pairs marked with red circles (upper) and with blue circles (bottom) selected in corresponding FFT patterns
GNS | La2O3 | Mg | Angle (°) | δ (%) | Interface coherency | ||||
---|---|---|---|---|---|---|---|---|---|
(hkl) | d-spacing (nm) | (uvtw) | d-spacing (nm) | (uvtw) | d-spacing (nm) | ||||
- | - | - | - | 0002 | 0.2539 | - | - | - | |
- | - | - | - | 11 | 0.1619 | - | - | - | |
- | - | - | - | 11 | 0.1357 | - | - | - | |
101 | 0.2041 | - | - | 10 | 0.1921 | 40.5 | - | - | |
- | - | 10 | 0.3422 | 10 | 0.2436 | 15.3 | 40.4 | Low | |
- | - | 0003 | 0.2041 | 0002 | 0.2599 | 0 | 21.4 | Intermediate | |
- | - | 10 | 0.1759 | 10 | 0.1452 | 32.6 | 21.1 | Intermediate | |
100 | 0.2146 | 01 | 0.2253 | - | - | 0 | 4.9 | Intermediate | |
002 | 0.4391 | 10 | 0.2121 | - | - | 55.1 | 51.7 | Low | |
102 | 0.1912 | 11 | 0.1828 | - | - | 40.8 | 4.3 | Intermediate | |
- | - | 01 | 0.2959 | 10 | 0.2480 | 11.0 | 19.3 | Intermediate |
Table 2 Summary of calculated lattice parameters from the analysis of TEM images
GNS | La2O3 | Mg | Angle (°) | δ (%) | Interface coherency | ||||
---|---|---|---|---|---|---|---|---|---|
(hkl) | d-spacing (nm) | (uvtw) | d-spacing (nm) | (uvtw) | d-spacing (nm) | ||||
- | - | - | - | 0002 | 0.2539 | - | - | - | |
- | - | - | - | 11 | 0.1619 | - | - | - | |
- | - | - | - | 11 | 0.1357 | - | - | - | |
101 | 0.2041 | - | - | 10 | 0.1921 | 40.5 | - | - | |
- | - | 10 | 0.3422 | 10 | 0.2436 | 15.3 | 40.4 | Low | |
- | - | 0003 | 0.2041 | 0002 | 0.2599 | 0 | 21.4 | Intermediate | |
- | - | 10 | 0.1759 | 10 | 0.1452 | 32.6 | 21.1 | Intermediate | |
100 | 0.2146 | 01 | 0.2253 | - | - | 0 | 4.9 | Intermediate | |
002 | 0.4391 | 10 | 0.2121 | - | - | 55.1 | 51.7 | Low | |
102 | 0.1912 | 11 | 0.1828 | - | - | 40.8 | 4.3 | Intermediate | |
- | - | 01 | 0.2959 | 10 | 0.2480 | 11.0 | 19.3 | Intermediate |
Fig. 12 Tensile properties and the corresponding fracture appearance: a engineering stress-strain curves of AZ91 alloy and its composites at room temperature, the inset shows the detailed dimensions of the tensile samples. b comparison of ultimate tensile strength and ductility of MMCs with AZ91 alloy as the matrix, all data are optimal values given in the references. c, d fracture appearance of S1 and S2 samples, respectively. The inset images in each figure are corresponding high-magnification images. The green dotted arrows in the figures refer to the dimples
Materials | YS (MPa) | UTS (MPa) | Elongation (%) | Enhancement (%) | ||
---|---|---|---|---|---|---|
YS | UTS | Elongation | ||||
A0 | 209 ± 1.3 | 291 ± 2.1 | 6.98 ± 0.32 | - | - | - |
S1 | 309 ± 1.5 | 346 ± 2.8 | 3.41 ± 0.29 | 47.8 | 18.9 | -51.1 |
S2 | 280 ± 0.9 | 373 ± 1.1 | 8.25 ± 0.11 | 33.9 | 28.2 | 18.2 |
Table 3 Mechanical properties of the developed MMCs
Materials | YS (MPa) | UTS (MPa) | Elongation (%) | Enhancement (%) | ||
---|---|---|---|---|---|---|
YS | UTS | Elongation | ||||
A0 | 209 ± 1.3 | 291 ± 2.1 | 6.98 ± 0.32 | - | - | - |
S1 | 309 ± 1.5 | 346 ± 2.8 | 3.41 ± 0.29 | 47.8 | 18.9 | -51.1 |
S2 | 280 ± 0.9 | 373 ± 1.1 | 8.25 ± 0.11 | 33.9 | 28.2 | 18.2 |
[1] | T.M. Pollock, Science 328, 986 (2010) |
[2] | Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, W.A. Curtin, Science 359, 447 (2018) |
[3] | S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, M.Y. Zheng, Sci. Rep. 6, 38824 (2016) |
[4] | J.L. Ye, X.H. Chen, H. Luo, J. Zhao, J.B. Li, J. Tan, H. Yang, B. Feng, K.H. Zheng, F.S. Pan, J. Magnes, Alloys 10, 2266 (2022) |
[5] | H. Yang, X.H. Chen, G.S. Huang, J.F. Song, J. She, J. Tan, K.H. Zheng, Y.M. Jin, B. Jiang, F.S. Pan, J. Magnes, Alloys 10, 2311 (2022) |
[6] | B. Tang, J.B. Li, J.L. Ye, H. Luo, Y.T. Wang, B. Guan, Y.F. Lu, X.H. Chen, K.H. Zheng, F.S. Pan, Acta Metall Sin. -Engl. Lett. 35, 1935 (2022) |
[7] | C. Soldano, A. Mahmood, E. Dujardin, Carbon 48, 2127 (2010) |
[8] | Y.X. Lu, F. Luo, Z. Chen, J. Cao, K. Song, L. Zhao, X.L. Xu, H.D. Wang, W.Y. Li, Acta Metall Sin. -Engl. Lett. 35, 1478 (2022) |
[9] | K. Munir, C. Wen, Y. Li, J. Magnes, Alloys 8, 269 (2020) |
[10] | M. Li, Q. Guo, L. Chen, L. Li, H. Hou, Y. Zhao, J. Mater. Res. Technol. 21, 4138 (2022) |
[11] | K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, K. Wu, J. Magnes, Alloys 9, 57 (2021) |
[12] | Z.Y. Zhao, P.K. Bai, R.D.K. Misra, M.Y. Dong, R.G. Guan, Y.J. Li, J.X. Zhang, L. Tan, J.F. Gao, T. Ding, W.B. Du, Z.H. Guo, J. Alloys Compd. 792, 203 (2019) |
[13] | Y.X. Tang, X.M. Yang, R.R. Wang, M.X. Li, Mater. Sci. Eng. A 599, 247 (2014) |
[14] | Y. Park, K. Cho, I. Park, Y. Park, Procedia Eng. 10, 1446 (2011) |
[15] | M.H. Nai, J. Wei, M. Gupta, Mater. Des. 60, 490 (2014) |
[16] | G.Q. Han, W.B. Du, X.X. Ye, K. Liu, X. Du, Z.H. Wang, S.B. Li, J. Alloys Compd. 727, 963 (2017) |
[17] | X.J. Li, H.L. Shi, X.J. Wang, X.S. Hu, C. Xu, W.Z. Shao, Carbon 186, 632 (2022) |
[18] | Q.H. Yuan, G.H. Zhou, L. Liao, Y. Liu, L. Luo, Carbon 127, 177 (2018) |
[19] | Q.H. Yuan, Z.Q. Qiu, G.H. Zhou, X.S. Zeng, L. Luo, X.X. Rao, Y. Ding, Y. Liu, Mater. Charact. 138, 215 (2018) |
[20] | Y. Liu, G. Wang, Y.R. Wang, Y. Jiang, D.Q. Yi, Trans. Nonferrous Met. Soc. China 29, 1721 (2019) |
[21] | W.C. Wang, J.L. Liu, H.H. Zhao, Q.H. Yuan, L. Luo, Y. Jiang, Y. Liu, Nonferrous Met. Soc. China 32, 472 (2022) |
[22] | J.H. Zhang, S.J. Liu, R. Wu, L.G. Hou, M.L. Zhang, J. Magnes, Alloys 6, 277 (2018) |
[23] | Z.J. Yu, X. Xu, B.T. Du, K. Shi, K. Liu, S.B. Li, X.Z. Han, T. Xiao, W.B. Du, Acta Metall Sin. -Engl. Lett. 35, 596 (2022) |
[24] | W.J. Liu, F.H. Cao, L.R. Chang, Z. Zhang, J.Q. Zhang, Corros. Sci. 51, 1334 (2009) |
[25] | S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scr. Mater. 63, 698 (2010) |
[26] | Q.H. Yuan, H.Q. Huang, W.C. Wang, G.H. Zhou, L. Luo, X.S. Zeng, Y. Liu, J. Alloys Compd. 824, 153889 (2020) |
[27] | K. Lu, Nat. Rev. Mater. 1, 16019 (2016) |
[28] | W.W. Gu, J.J. Liu, M.G. Hu, F. Wang, Y. Song, A.C.S. Appl, Mater. Interfaces 7, 26914 (2015) |
[29] | G. Kresse, J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996) |
[30] | G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) |
[31] | J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) |
[32] | S. Grimme, J. Comput. Chem. 27, 1787 (2006) |
[33] | H.F. Liu, J. Zuo, T. Nakata, C. Xu, G.S. Wang, H.L. Shi, G.Z. Tang, X.J. Wang, S. Kamado, L. Geng, Materials (Basel) 15, 1078 (2022) |
[34] | J.B. Pedley, R.D. Naylor, S.P. Kirby,Thermochemical Data of Organic Compounds, 2nd edn. (Springer, New York, 1986), p.116 |
[35] | N. Wang, J.J. Liu, W.W. Gu, Y. Song, F. Wang, RSC Adv. 6, 77786 (2016) |
[36] | L.W. Chen, Y.H. Zhao, M.X. Li, L.M. Li, L.F. Hou, H. Hou, Mater. Sci. Eng. A 804, 140793 (2021) |
[37] | W. Smith, J. Hashemi, Foundations of Materials Science and Engineering, 4th edn. (McGraw-Hill, Boca Raton, 2006), pp. 72-115 |
[38] | International Centre for Diffraction Data,Powder Diffraction Standards. (Powder Diffraction File,Pennsylvania), (2002) |
[39] | D.B. Williams, C.B. Carter, Transmission Electron Microscopy, 2nd edn. (Springer, New York, 2009), pp. 137-152 |
[40] | Y.C. Guo, K.B. Nie, X.K. Kang, K.K. Deng, J.G. Han, Z.H. Zhu, J. Alloys Compd. 771, 847 (2019) |
[41] | K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, K. Wu, Compos. Pt. A 43, 1280 (2012) |
[42] | M.J. Shen, W.F. Ying, X.J. Wang, M.F. Zhang, K. Wu, J. Mater. Eng. Perform. 24, 3798 (2015) |
[43] | Q.H. Yuan, X.S. Zeng, Y. Liu, L. Luo, J.B. Wu, Y.C. Wang, G.H. Zhou, Carbon 96, 843 (2016) |
[44] | X.Y. Sun, C.J. Li, X.B. Dai, L.X. Zhao, B.E. Li, H.S. Wang, C.Y. Liang, H.P. Li, J.W. Fan, J. Alloys Compd. 835, 155125 (2020) |
[45] | Y.F. Liu, X.J. Jia, X.G. Qiao, S.W. Xu, M.Y. Zheng, J. Alloys Compd. 806, 71 (2019) |
[46] | M. Wang, Y. Zhao, L.D. Wang, Y.P. Zhu, X.J. Wang, J. Sheng, Z.Y. Yang, H.L. Shi, Z.D. Shi, W.D. Fei, Carbon 139, 954 (2018) |
[47] | Y. Ma, H. Chen, M.X. Zhang, A. Addad, Y. Kong, M.B. Lezaack, W.M. Gan, Z. Chen, G. Ji, Acta Mater. 242, 118470 (2022) |
[48] | G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Phys. Rev. B 62, 3099 (2000) |
[1] | Yuhao Chen, Kaibo Nie, Kunkun Deng, Zhilong Liu, Quanxin Shi. Ameliorating the Strength-Modulus Synergy in GNPs Reinforced Mg-Zn-Zr Composites via Multidirectional Forging and Hot Extrusion Deformation [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 425-437. |
[2] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
[3] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[4] | Dongmei Pu, Xianhua Chen, Jingfeng Wang, Jun Tan, Jianbo Li, Hong Yang, Bo Feng, Kaihong Zheng, Fusheng Pan. Aging Behavior of As-Extruded Ti Particles Reinforced VW94 Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 401-406. |
[5] | Lu Xiao, Ting-Ting Liu, Yue Chu, Bo Song, Jie Zhao, Xian-Hua Chen, Kai-Hong Zheng, Fu-Sheng Pan. Effect of Ti Particles on the Microstructure and Mechanical Properties of AZ91 Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 513-524. |
[6] | Liwen Chen, Jianhui Jing, Lulu Zhang, Jing Li, Weipeng Chen, Limin Li, Yuan Zhao, Hua Hou, Yuhong Zhao. Corrosion Behavior of Graphene Nanosheets Reinforced Magnesium Matrix Composites in Simulated Body Fluids [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 525-536. |
[7] | Jin-Kai Zhang, Cui-Ju Wang, Yi-Dan Fan, Chao Xu, Kai-Bo Nie, Kun-Kun Deng. Effect of Tip Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 551-560. |
[8] | Peitang Zhao, Xuejian Li, Hailong Shi, Xiaoshi Hu, Chunlei Zhang, Chao Xu, Xiaojun Wang. Fabrication, Microstructure and Mechanical Properties of in situ GNPs Reinforced Magnesium Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 561-569. |
[9] | Yan Wen, Xuan Sun, Jian Zhou, Bingliang Liu, Haojie Guo, Yuxin Li, Fei Yin, Liqiang Wang, Lechun Xie, Lin Hua. Influence of Electroshocking Treatment on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Thin-Wall Specimen Manufactured by Laser Melting Deposition [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 145-158. |
[10] | Huan Yang, Ying Liu, Jianbo Jin, Kunmao Li, Junjie Yang, Lingjian Meng, Chunbo Li, Wencai Zhang, Shengfeng Zhou. Effect of Heat Treatment on Microstructure and Mechanical Behavior of Cu-Bearing 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 169-180. |
[11] | Xuan Luo, Chao Yang, Dongdong Li, Lai-Chang Zhang. Laser Powder Bed Fusion of Beta-Type Titanium Alloys for Biomedical Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 17-28. |
[12] | Xinxing Xiong, Sijie Yu, Pei Wang, Junfang Qi, Haichao Li, Xulei Wang, Michael Ryan, Debajyoti Bhaduri. Effect of TiB2 Addition on Microstructure and Mechanical Properties of AA8009 Alloy Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 67-77. |
[13] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[14] | Xiao-Yang Yi, Wei Liu, Yun-Fei Wang, Bo-Wen Huang, Xin-Jian Cao, Kui-Shan Sun, Xiao Liu, Xiang-Long Meng, Zhi-Yong Gao, Hai-Zhen Wang. Effect of Sn Content on the Microstructural Features, Martensitic Transformation and Mechanical Properties in Ti-V-Al-Based Shape Memory Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1247-1260. |
[15] | Wenhe Li, Wenshuang Gu, Yuqiu Chen, Jun Gong, Zhiliang Pei, Chao Sun. Microstructure, Mechanical, and Tribological Properties of Amorphous WB2/Ti Multilayer Coatings [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1385-1396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||