Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1875-1890.DOI: 10.1007/s40195-024-01756-3
Previous Articles Next Articles
Zidong Lin1,2, Xuefeng Zhao1,2, Wei Ya3, Yan Li2, Zhen Sun4, Shiwei Han5, Xiaoyang Peng5, Xinghua Yu1,2()
Received:
2024-02-27
Revised:
2024-04-12
Accepted:
2024-04-28
Online:
2024-11-10
Published:
2024-08-14
Contact:
Xinghua Yu, xyu@bit.edu.cnZidong Lin, Xuefeng Zhao, Wei Ya, Yan Li, Zhen Sun, Shiwei Han, Xiaoyang Peng, Xinghua Yu. Effect of Multiple Thermal Cycles on Microstructure and Mechanical Properties of Cu Modified Ti64 Thin Wall Fabricated by Wire-Arc Directed Energy Deposition[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1875-1890.
Add to citation manager EndNote|Ris|BibTeX
Materials | Al | V | Cu | Fe | C | Ti |
---|---|---|---|---|---|---|
Ti64-1.2Cu wire | 4.72 | 4.08 | 1.20 | < 0.25 | < 0.08 | Bal. |
Wrought Ti64 base | 6.28 | 4.15 | - | 0.15 | 0.03 | Bal. |
Table 1 Chemical composition of the used materials (wt%)
Materials | Al | V | Cu | Fe | C | Ti |
---|---|---|---|---|---|---|
Ti64-1.2Cu wire | 4.72 | 4.08 | 1.20 | < 0.25 | < 0.08 | Bal. |
Wrought Ti64 base | 6.28 | 4.15 | - | 0.15 | 0.03 | Bal. |
Variables | Parameters |
---|---|
Current | 200 A |
Voltage | 16.2 V |
Deposition speed | 420 mm/min |
Step up distance | 4.5 mm |
Shielding gas flow rate (99.999% Ar)—Torchnozzle | 22 L/min |
Protective gas flow rate (99.999% Ar)—Tracing shielding | 150 L/min |
Contact tip-to-work distance (CTWD)—Tracing shielding | 1 mm |
Wire stick-out distance | 15 mm |
Interlayer temperature | Room temperature |
Polarity | Direct current, reversed polarity (wire: positive, base: negative) |
Molten droplet transfer mode | Super active wire process (modification of short-circuit) |
Post-heat treatment | 830 °C−1 h + Air cooling |
Table 2 Deposition and post-heat treatment parameters
Variables | Parameters |
---|---|
Current | 200 A |
Voltage | 16.2 V |
Deposition speed | 420 mm/min |
Step up distance | 4.5 mm |
Shielding gas flow rate (99.999% Ar)—Torchnozzle | 22 L/min |
Protective gas flow rate (99.999% Ar)—Tracing shielding | 150 L/min |
Contact tip-to-work distance (CTWD)—Tracing shielding | 1 mm |
Wire stick-out distance | 15 mm |
Interlayer temperature | Room temperature |
Polarity | Direct current, reversed polarity (wire: positive, base: negative) |
Molten droplet transfer mode | Super active wire process (modification of short-circuit) |
Post-heat treatment | 830 °C−1 h + Air cooling |
Fig. 1 Deposition arrangement of the Ti64-1.2Cu single-bead wall: a the setup of the deposition system, b the physical diagram of the deposition process
Fig. 5 SEM microstructural images of the deposited Ti64-1.2Cu single-bead wall: a cross section (CS in Fig. 2), b-e microstructure of the top sample (Top in Fig. 2), f-i microstructure of the middle sample (Mid in Fig. 2)
Position | Prior β | The aspect ratio of α laths | GB α | Basketweave |
---|---|---|---|---|
Top | 592 ± 8 μm | 16.24 ± 1.8 | Continuous 0.45 ± 0.04 μm | Coarse |
Mid | 761 ± 10 μm | 10.59 ± 1.6 | Fine |
Table 3 Size variation of prior β grains and α phases before and after experiencing thermal cycles
Position | Prior β | The aspect ratio of α laths | GB α | Basketweave |
---|---|---|---|---|
Top | 592 ± 8 μm | 16.24 ± 1.8 | Continuous 0.45 ± 0.04 μm | Coarse |
Mid | 761 ± 10 μm | 10.59 ± 1.6 | Fine |
Fig. 6 EBSD results of the top and middle samples (Top and Mid in Fig. 2) in the deposited Ti64-1.2Cu wall: a, e, i, m inverse pole figure (IPF), b, f, j, n Kernel average misorientation (KAM), c, g, k, o Schmid factor (SF), and d, h, l, p pole figure (PF)
Fig. 7 TEM graphs of the top and middle samples (TE-Top and TE-Mid in Fig. 2) in the deposited Ti64-1.2Cu wall: a, e TEM bright field image showing the α and β laths, b, f TEM bright field image showing the targeted fast Fourier transformation (FFT) regions, c, g the corresponding SAED patterns from the targeted FFT regions, d, h HRTEM images of α and β interface
Top | Middle | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Ti | Al | V | Cu | Element | Ti | Al | V | Cu |
α phase | 93.69 ± 3.68 | 2.26 ± 0.23 | 3.26 ± 0.54 | 0.79 ± 0.23 | α phase | 94.56 ± 3.13 | 1.62 ± 0.13 | 3.45 ± 0.29 | 0.37 ± 0.13 |
β phase | 94.06 ± 3.65 | 1.60 ± 0.16 | 3.97 ± 0.45 | 0.37 ± 0.23 | β phase | 84.44 ± 2.86 | 1.07 ± 0.14 | 10.64 ± 0.58 | 3.85 ± 0.38 |
Table 4 Elemental composition in the phase of the top and middle regions in the Ti64-1.2Cu wall (at.%)
Top | Middle | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Ti | Al | V | Cu | Element | Ti | Al | V | Cu |
α phase | 93.69 ± 3.68 | 2.26 ± 0.23 | 3.26 ± 0.54 | 0.79 ± 0.23 | α phase | 94.56 ± 3.13 | 1.62 ± 0.13 | 3.45 ± 0.29 | 0.37 ± 0.13 |
β phase | 94.06 ± 3.65 | 1.60 ± 0.16 | 3.97 ± 0.45 | 0.37 ± 0.23 | β phase | 84.44 ± 2.86 | 1.07 ± 0.14 | 10.64 ± 0.58 | 3.85 ± 0.38 |
Fig. 11 Thermo-Calc calculation results of Ti64 alloy with Cu addition: a solidification range, b phase composition at the 4.4 wt% Cu addition, c phase composition at the 4.5 wt% Cu addition
Fig. 13 TEM graphs of heat-treated Ti64-1.2Cu samples: a-c TEM bright field image showing the α laths, β laths, secondary α and dislocation, d-f TEM bright field image showing the Ti2Cu precipitation, g SAED patterns of the region I in (c), h HRTEM images of the region II in (d), i the corresponding FFT and SAED patterns of (h)
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
fβ, Mid | 18.67% | Bα, Cu (MPa/at.%) | 27 | Bβ, Cu (MPa/at2/3) | 1650 |
fα, Mid | 81.33% | Bα, V (MPa/at.%) | 27 | Bβ, V (MPa/at2/3) | 879 |
fβ, Top | 5.45% | Bα, Al (MPa/at.%) | 40 | Bβ, Al (MPa/at2/3) | 285 |
fα, Top | 94.55% | nα | 1 | nβ | 3/2 |
Xβ, Mid, Cu | 3.85 at.% | Xβ, Mid, V | 10.64 at.% | Xβ, Mid, Al | 1.07 at.% |
Xα, Mid, Cu | 0.37 at.% | Xα, Mid, V | 3.45 at.% | Xα, Mid, Al | 1.62 at.% |
Xβ, Top, Cu | 0.37 at.% | Xβ, Top, V | 3.97 at.% | Xβ, Top, Al | 1.60 at.% |
Xα, Top, Cu | 0.79 at.% | Xα, Top, V | 3.26 at.% | Xα, Top, Al | 2.26 at.% |
Table 5 Parameters for calculating the yield strength increment contributed by the SSS effect
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
fβ, Mid | 18.67% | Bα, Cu (MPa/at.%) | 27 | Bβ, Cu (MPa/at2/3) | 1650 |
fα, Mid | 81.33% | Bα, V (MPa/at.%) | 27 | Bβ, V (MPa/at2/3) | 879 |
fβ, Top | 5.45% | Bα, Al (MPa/at.%) | 40 | Bβ, Al (MPa/at2/3) | 285 |
fα, Top | 94.55% | nα | 1 | nβ | 3/2 |
Xβ, Mid, Cu | 3.85 at.% | Xβ, Mid, V | 10.64 at.% | Xβ, Mid, Al | 1.07 at.% |
Xα, Mid, Cu | 0.37 at.% | Xα, Mid, V | 3.45 at.% | Xα, Mid, Al | 1.62 at.% |
Xβ, Top, Cu | 0.37 at.% | Xβ, Top, V | 3.97 at.% | Xβ, Top, Al | 1.60 at.% |
Xα, Top, Cu | 0.79 at.% | Xα, Top, V | 3.26 at.% | Xα, Top, Al | 2.26 at.% |
[1] | Z.D. Lin, K.J. Song, B. Di Castri, W. Ya, X.H. Yu, J. Alloys Compd. 921, 165630 (2022) |
[2] | J.H. Zhang, Y. Yang, S. Cao, Z.Q. Cao, D. Kovalchuk, S.Q. Wu, E.Q. Liang, X. Zhang, W. Chen, F. Wu, Acta Metall. Sin.-Engl. Lett. 33, 1311 (2020) |
[3] | W.Q. Lu, Y.J. Liu, X. Wu, X.C. Liu, J.C. Wang, Surf. Coat. Technol. 470, 129849 (2023) |
[4] | Y.W. Cui, L.Q. Wang, L.C. Zhang, Prog. Mater. Sci. 144, 101277 (2024) |
[5] | H.Y. Ma, J.C. Wang, P. Qin, Y. Liu, L.Y. Chen, L.Q. Wang, L.C. Zhang, J. Mater. Sci. Technol. 183, 32 (2023) |
[6] | K.M. Li, J.J. Yang, Y.L. Yi, X.C. Liu, Y.J. Liu, L.C. Zhang, W.C. Zhang, W. Li, D.C. Chen, S.F. Zhou, Acta Mater. 256, 119112 (2023) |
[7] | Y. Zhou, G. Qin, L. Li, X. Lu, R. Jing, X. Xing, Q. Yang, Mat. Sci. Eng. A 772, 138654 (2020) |
[8] | G. Xian, J.M. Oh, J. Lee, S.M. Cho, J.-T. Yeom, Y. Choi, N. Kang, Weld. World 66, 847 (2022) |
[9] |
P. Zhang, D. Sun, A. Cho, S. Weon, S. Lee, J. Lee, J.W. Han, D.P. Kim, W. Choi, Nat. Commun. 10, 940 (2019)
DOI PMID |
[10] | X. Wang, L.J. Zhang, J. Ning, S.J. Na, Mat. Sci. Eng. A 833, 142316 (2022) |
[11] | X. Li, Z. Yao, X. Tao, M. Yao, S. Zhang, Vacuum 194, 110638 (2021) |
[12] | Z.D. Lin, K.J. Song, Z.Q. Zhu, K.W. Guo, W. Ya, J. Xiao, X.H. Yu, Mat. Sci. Eng. A 887, 145750 (2023) |
[13] | M.J. Bermingham, S.D. McDonald, M.S. Dargusch, Mat. Sci. Eng. A 719, 1 (2018) |
[14] | M.J. Bermingham, D. Kent, H. Zhan, D.H. StJohn, M.S. Dargusch, Acta Mater. 91, 289 (2015) |
[15] | Z.D. Lin, C. Goulas, Y. Li, Y.Z. Fa, L.X. Qiao, Z. Sun, R. Cao, W. Ya, X.H. Yu, J. Alloys Compd. 947, 169614 (2023) |
[16] | S. Sui, Y. Chew, F. Weng, C. Tan, Z. Du, G. Bi, Virtual Phys. Prototy. 16, 417 (2021) |
[17] | A. Bhattacharjee, V.K. Varma, S.V. Kamat, A.K. Gogia, S. Bhargava, Metall. Mater. Trans. A 37, 1423 (2006) |
[18] | P. Luo, Q. Hu, X. Wu, Metall. Mater. Trans. A 47, 1922 (2016) |
[19] | G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Díaz-del-Castillo, Mat. Sci. Eng. A 756, 156 (2019) |
[20] | H. Sasano, H. Kimura, Titanium 80, 1147 (1980) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[3] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[4] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[5] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[6] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[7] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[8] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[9] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[10] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[11] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[12] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[13] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[14] | Zhiyuan Liu, Li Jin, Jian Zeng, Fulin Wang, Fenghua Wang, Shuai Dong, Jie Dong. A Review on Particle Reinforced Mg Matrix Composites Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 391-400. |
[15] | Jing-Peng Xiong, Yi-Qi Zeng, Jin-Long Liu, Wei-Cheng Wang, Lan Luo, Yong Liu. Interface Design Strategy for GNS/AZ91 Composites with Semi-Coherent Structure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 467-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||