Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1858-1874.DOI: 10.1007/s40195-024-01774-1
Previous Articles Next Articles
Xin Li1, Chenglei Wang1(), Laichang Zhang2(
), Shengfeng Zhou3(
), Jian Huang4(
), Mengyao Gao1, Chong Liu1, Mei Huang1, Yatao Zhu1, Hu Chen1, Jingya Zhang1, Zhujiang Tan1
Received:
2024-04-28
Revised:
2024-06-15
Accepted:
2024-06-28
Online:
2024-11-10
Published:
2024-09-15
Contact:
Chenglei Wang, clw0919@163.com;
Laichang Zhang, l.zhang@ecu.edu.au;
Shengfeng Zhou, zhousf1228@163.com;
Jian Huang, 1353865317@qq.comXin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan. Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe-Co-Ni-Based High-Entropy Alloys[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1858-1874.
Add to citation manager EndNote|Ris|BibTeX
Number | Feature | Number | Feature |
---|---|---|---|
1 | Fe content (at.%) | 10 | Homogenization temperature (k) |
2 | Co content (at.%) | 11 | Homogenization time (h) |
3 | Ni content (at.%) | 12 | Cold rolling (%) |
4 | Al content (at.%) | 13 | First aging temperature (k) |
5 | Ti content (at.%) | 14 | First aging time (h) |
6 | Cr content (at.%) | 15 | Second aging temperature (k) |
7 | Cu content (at.%) | 16 | Second aging time (h) |
8 | Mn content (at.%) | 17 | Water cooling |
9 | Nb content (at.%) | 18 | Air cooling |
19 | Furnace cooling |
Table 1 Features and their numbers of data
Number | Feature | Number | Feature |
---|---|---|---|
1 | Fe content (at.%) | 10 | Homogenization temperature (k) |
2 | Co content (at.%) | 11 | Homogenization time (h) |
3 | Ni content (at.%) | 12 | Cold rolling (%) |
4 | Al content (at.%) | 13 | First aging temperature (k) |
5 | Ti content (at.%) | 14 | First aging time (h) |
6 | Cr content (at.%) | 15 | Second aging temperature (k) |
7 | Cu content (at.%) | 16 | Second aging time (h) |
8 | Mn content (at.%) | 17 | Water cooling |
9 | Nb content (at.%) | 18 | Air cooling |
19 | Furnace cooling |
Fig. 2 Performance and SHAP significance plots of L12 phase existence prediction models: a, c, e ROC curves of different predictive models, b, d, f ROC curves of different prediction models after screening out some useless features, g importance of features of predictive models
Fig. 3 Heat map of Pearson's correlation coefficient set between different features of EWM-based database for comprehensive prediction of L12 phase volume fraction and hardness of HEAs
Fig. 4 Predictive effectiveness of an combined prediction model for L12 phase volume fraction and hardness on test and training datasets: a-d test dataset, e-h training dataset, i distribution of SHAP values for different input features of the combined L12 phase volume fraction and hardness prediction model
Fig. 5 R2 and RMSE values of EWM-based integrated prediction model for L12 phase volume fraction and hardness of HEAs on training and test datasets: a comparison of R2 values, b comparison of RMSE values
Fig. 7 Heat map of Pearson’s correlation coefficient set between different features of the EWM-based database for comprehensive strength and plasticity prediction of HEAs
Fig. 8 Performance of the combined strength and plasticity prediction model for HEAs on test and training datasets: a-d test dataset, e-h: training data set, i distribution of SHAP values for different input features of the combined strength and plasticity prediction model
Fig. 9 R2 and RMSE values of the combined strength and plasticity prediction model for HEAs on the training and test datasets: a comparison of R2 values, b comparison of RMSE values
Alloy | Fe (at.%) | Co (at.%) | Ni (at.%) | Cr (at.%) | Al (at.%) | Ti (at.%) | F-A-Tem (℃) | F-A-Time (h) |
---|---|---|---|---|---|---|---|---|
A1 | 25 | 31 | 37 | - | 2 | 5 | 800 | 8 |
A2 | 25 | 25 | 41 | - | 3 | 6 | 800 | 8 |
A3 | 23 | 28 | 37 | 4 | 4 | 4 | 800 | 8 |
A4 | 24 | 27 | 32 | 8 | 6 | 3 | 800 | 8 |
Table 2 Composition and process set of candidate HEAs to be verified after screening
Alloy | Fe (at.%) | Co (at.%) | Ni (at.%) | Cr (at.%) | Al (at.%) | Ti (at.%) | F-A-Tem (℃) | F-A-Time (h) |
---|---|---|---|---|---|---|---|---|
A1 | 25 | 31 | 37 | - | 2 | 5 | 800 | 8 |
A2 | 25 | 25 | 41 | - | 3 | 6 | 800 | 8 |
A3 | 23 | 28 | 37 | 4 | 4 | 4 | 800 | 8 |
A4 | 24 | 27 | 32 | 8 | 6 | 3 | 800 | 8 |
Alloy | L12 phase volume fraction (Experiment value) | Hardness (Experiment value) | EW1 (Experiment value) | EW1 (Predicted value) |
---|---|---|---|---|
A1 | 45% | 385.5 HV | 1.8273 | 1.9754 |
A2 | 43% | 381.6 HV | 1.8115 | 1.9865 |
A3 | 48% | 393.9 HV | 1.8687 | 1.9851 |
A4 | 47% | 388.9 HV | 1.8454 | 1.9625 |
Table 3 Experimental and predicted EW1 values for candidate HEAs
Alloy | L12 phase volume fraction (Experiment value) | Hardness (Experiment value) | EW1 (Experiment value) | EW1 (Predicted value) |
---|---|---|---|---|
A1 | 45% | 385.5 HV | 1.8273 | 1.9754 |
A2 | 43% | 381.6 HV | 1.8115 | 1.9865 |
A3 | 48% | 393.9 HV | 1.8687 | 1.9851 |
A4 | 47% | 388.9 HV | 1.8454 | 1.9625 |
Fig. 13 Tensile properties of candidate HEAs at room temperature: a tensile curves, b comparison of alloy properties, c tensile and yield strengths, d elongation
Alloy | Tensile strength (Experiment value) | Yield strength (Experiment value) | Total elongation (Experiment value) | EW2 (Experiment value) | EW2 (Predicted value) |
---|---|---|---|---|---|
A1 | ~ 1436 MPa | ~ 1014 MPa | ~ 32.7% | 2.9695 | 3.1978 |
A2 | ~ 1421 MPa | ~ 1021 MPa | ~ 24% | 2.9417 | 3.1965 |
A3 | ~ 1526MPa | ~ 1138 MPa | ~ 24.3% | 2.9789 | 3.2368 |
A4 | ~ 1490 MPa | ~ 1097 MPa | ~ 32% | 3.0143 | 3.2332 |
Table 4 Experimental and predicted EW2 values for candidate HEAs
Alloy | Tensile strength (Experiment value) | Yield strength (Experiment value) | Total elongation (Experiment value) | EW2 (Experiment value) | EW2 (Predicted value) |
---|---|---|---|---|---|
A1 | ~ 1436 MPa | ~ 1014 MPa | ~ 32.7% | 2.9695 | 3.1978 |
A2 | ~ 1421 MPa | ~ 1021 MPa | ~ 24% | 2.9417 | 3.1965 |
A3 | ~ 1526MPa | ~ 1138 MPa | ~ 24.3% | 2.9789 | 3.2368 |
A4 | ~ 1490 MPa | ~ 1097 MPa | ~ 32% | 3.0143 | 3.2332 |
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004) |
[3] | S. Dasari, Y.J. Chang, A. Jagetia, V. Soni, A. Sharma, B. Gwalani, S. Gorsse, A.C. Yeh, R. Banerjee, Mater. Sci. Eng. A 805, 140551 (2021) |
[4] | D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017) |
[5] | B. Cao, T. Yang, W.H. Liu, C.T. Liu, MRS Bull. 44, 854 (2019) |
[6] | Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. Nieh, Intermetallics 66, 67 (2015) |
[7] | Y.S. Geng, J. Chen, H. Tan, J. Cheng, J. Yang, W.M. Liu, Wear 456,203368 (2020) |
[8] | W. He, C. Zeng, W. Yang, W.H. Chen, Y.L. Ai, J. Mater. Res. Technol. 21, 4577 (2022) |
[9] | L. Zhang, Y. Zhou, X. Jin, X.Y. Du, B.S. Li, Mater. Sci. Eng. A 732, 186 (2018) |
[10] | M.L. Wang, Y.P. Lu, J.G. Lan, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.K. Liaw, Acta Mater. 248, 118806 (2023) |
[11] | Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124, 143 (2017) |
[12] | X.J. Hua, P. Hu, H.R. Xing, J.Y. Han, S.W. Ge, S.L. Li, C.J. He, K.S. Wang, C.J. Cui, Acta Metall. Sin. -Engl. lett. 35, 1231 (2022) |
[13] | C.D. Zhao, J.S. Li, Y.D. Liu, X. Ma, Y.J. Jin, W.Y. Wang, H.C. Kou, J. Wang, J. Mater. Sci. Technol. 86, 117 (2021) |
[14] | A. Kumar, A.K. Swarnakar, M. Chopkar, J. Mater. Eng. Perform. 27, 3304 (2018) |
[15] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165, 228 (2019)
DOI |
[16] | R. Li, L. Guo, Y. Liu, Q. Peng, Acta Metall. Sin. -Engl. Lett. 36, 1482 (2023) |
[17] | Q.Q. Lu, X.H. Chen, W. Tian, H. Wang, P. Liu, H.L Zhou, S.L. Fu, Y.H. Gao, M.Y. Wan, X.J. Wang. J. Alloys Compd. 897, 163036 (2022) |
[18] | J. Chen, X.Y. Zhou, W.L. Wang, B. Liu, Y.K. Lv, W. Yang, D.P. Xu, Y. Liu, J. Alloys Compd. 760, 15 (2018) |
[19] | D. Huang, J.S. Lu, Y.X. Zhuang, C.X. Tian, Y.B. Li, Corros. Sci. 158, 108088 (2019) |
[20] | X.Y. Gu, D. Huang, Y.X. Zhuang, Vacuum 204, 111350 (2022) |
[21] | C.J. Liang, Y.L. Deng, C.L. Wang, W.B. Zhu, J. Mater. Sci. 58, 12083 (2023) |
[22] | L. Zhang, Y. Zhou, X. Jin, X.Y. DuY, B.S. Li, Mater. Sci. Eng. A 732, 186 (2018) |
[23] | P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Nature 533, 73 (2016) |
[24] | K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Nature 559, 547 (2018) |
[25] | Z.Y. Rao, P.Y. Tung, R.W. Xie, Y. Wei, H.B. Zhang, A. Ferrari, T.P.C. Klaver, F. Körmann, P.T. Sukumar, A.K. Silva, Y. Chen, Z.M. Li, D. Ponge, J. Neugebauer, O. Gutfleisch, S. Bauer, D. Raabe, Science 378, 78 (2022) |
[26] | C.C. Wang, C.G. Shen, Q. Cui, C. Zhang, W. Xu, J. Nucl. Mater. 529, 151823 (2020) |
[27] | Y.F. Chen, Y. Tian, Y.M. Zhou, D.Q. Fang, X.D. Ding, J. Sun, D.Z. Xue, J. Alloys Compd. 844, 156159 (2020) |
[28] | Y.P. Diao, L.C. Yan, K.W. Gao, J. Mater. Sci. Technol. 109, 86 (2022) |
[29] | Y. Lu, K. Zhang, B.B. Zhao, X.P. Dong, F. Sun, B.X. Zhou, Y.Q. Zhen, L.T. Zhang, Mater. Sci. Eng. A 866, 144677 (2023) |
[30] | H.L. Peng, L. Hu, L.J. Li, W.P. Zhang, Mater. Sci. Eng. A 772, 138803 (2020) |
[31] | Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, N. Birbilis, Design 170, 107698 (2019) |
[32] |
T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu, Acta Mater. 189, 47 (2020)
DOI |
[33] | Y. Guan, Y.C. Liu, Z.Q. Ma, H.J. Li, H.Y. Yu, J. Alloys Compd. 842, 155891 (2020) |
[34] | X. Li, Z.X. Zhou, C.L. Wang, H.Q. Qin, J.J. Yang, W.J. Liu, M.L. Liang, C. Liu, H. Tan, Z.J. Zhang, J. Vac. Sci. Technol. A 41, 063105 (2023) |
[35] | W. Ren, Y.F. Zhang, W.L. Wang, S.J. Ding, N. Li, Mater. Des. 235, 112454 (2023) |
[36] | A.A. Catal, E. Bedir, R. Yilmaz, M.A. Swider, C. Lee, O. El-Atwani, H.J. Maier, H.C. Ozdemir, D. Canadinc, Comput. Mater. Sci. 231, 112612 (2023) |
[37] | Y.L. Qi, Y.K. Wu, T.H. Cao, F. Jiang, J. Sun, Mater. Sci. Eng. A 797, 140056 (2020) |
[38] | E.A. Anber, N.C. Smith, P.K. Liaw, C.M. Wolverton, M.L. Taheri, APL Mater. 10, 101108 (2022) |
[39] | Y.U. Guo, H.J. Su, P.X. Yang, Y. Yang, Z.L. Shen, Y. Liu, D. Zhao, H. Jiang, L. Liu, H.Z. Fu, Acta Metall. Sin. -Engl. Lett. 35, 1407 (2022) |
[40] | W.J. Lu, K. Yan, X. Luo, Y.T. Wang, L. Hou, P.T. Li, B. Huang, Y.Q. Yang, J. Mater. Sci. Technol. 98, 197 (2022) |
[41] | X. Bai, W. Fang, R.B. Chang, H.Y. Yu, X. Zhang, F.X. Yin, Mater. Sci. Eng. A 767, 138403 (2019) |
[42] | Q.W. Guo, Y. Pan, H. Hou, Y.H. Zhao, Met. Hard Mater. 112, 106116 (2023) |
[43] | C.L. Wang, C.J. Liang, M.J. Yang, C. Huang, Z.F. Yao, B. Qiu, K.X. Zhang, Y.G. Xie, M.L. Liang, W.J. Liu, J.J. Yang, S.F. Zhou, Mater. Des. 221, 110940 (2022) |
[44] | S. Li, S. Li, D.R. Liu, R. Zou, Z.Y. Yang, Comput. Mater. Sci. 205, 11185 (2022) |
[45] | X. Huang, Y. Dong, S.M. Lu, C.Q. Li, Z.G. Zhang, Acta Metall. Sin. -Engl. Lett. 34, 1079 (2021) |
[46] | L. Zhang, Y. Zhou, X. Jin, X.Y. Du, B.S. Li, Scr. Mater. 146, 226 (2018) |
[47] |
Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater. 188, 517 (2020)
DOI |
[48] | N. Li, C.L. Jia, Z.W. Wang, L.H. Wu, D.R. Ni, Z.K. Li, H.M. Fu, P. Xue, B.L. Xiao, Z.L. Ma, Y. Shao, Y.L. Chang, Acta Metall. Sin. -Engl. Lett. 33, 947 (2020) |
[49] | C.J. Liang, C.L. Wang, K.X. Zhang, H. Tan, M.L. Liang, Y.G. Xie, W.J. Liu, J.J. Yang, S.F. Zhou, J. Alloys Compd. 911, 165082 (2022) |
[50] | X.R. Fan, L. Xie, Q. Li, C.T. Chang, H.X. Li, Acta Metall. Sin. -Engl. Lett. 36, 417 (2023) |
[51] | Y.W. Wu, X.Y. Zhao, Q. Chen, C. Yang, M.G. Jiang, C.Y. Liu, Z. Jia, Z.W. Chen, T. Yang, Z.Y. Liu, Vir. Phys. Pro. 17, 451 (2022) |
[52] | S.Y. Li, F.D. Chen, X.B. Tang, G.J. Ge, Z.J. Sun, Z.L. Geng, M.Y. Fan, P. Huang, J. Mater. Eng. Perform. 31, 8294 (2022) |
[53] | G.L. Ma, Y. Zhao, H.Z. Cui, X.J. Song, M.L. Wang, K. Lee, X.H. G, Q. Song, C.M. Wang. Acta Metall. Sin. -Engl. Lett. 34, 1087 (2021) |
[54] | J. Zhang, Y.Y Hu, Q.Q Wei, Y. Xiao, P.A. Chen, G.Q. Luo, Q. Shen. J. Alloys Compd. 827, 154301 (2020) |
[55] | R. Li, J. Ren, G.J. Zhang, J.Y. He, Y.P. Lu, T.M. Wang, T.J. Li, Acta Metall. Sin. -Engl. Lett. 33, 10466 (2020) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[3] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
[4] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[5] | Xuan-Hong Cai, Zhen-Hua Wang, Ben Niu, Jin-Feng Li, Qing Wang, Show authors. Microstructural Evolutions and Mechanical Properties of Energetic Al1 (TiZrNbTaMoCr)15 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 620-632. |
[6] | Zhihong Zhu, Wenhang Ning, Xuanyang Niu, Yuhong Zhao. Machine Learning-Based Research on Tensile Strength of SiC-Reinforced Magnesium Matrix Composites via Stir Casting [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 453-466. |
[7] | Chao Xiang, En-Hou Han, Zhiming Zhang, Huameng Fu, Haifeng Zhang, Jianqiu Wang, Guodong Hu. Microstructure, Mechanical Properties and Corrosion Resistance of the Mo0.5V0.5NbTiZrx High-Entropy Alloys with Low Thermal Neutron Sections [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1643-1656. |
[8] | Changxi Liu, Yingchen Wang, Yintao Zhang, Liqiang Wang. Additively Manufactured High-Entropy Alloys: Exceptional Mechanical Properties and Advanced Fabrication [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 3-16. |
[9] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[10] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[11] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[12] | Bo Cheng, Yunkai Li, Xiaoxi Li, Huibin Ke, Liang Wang, Tangqing Cao, Di Wan, Benpeng Wang, Yunfei Xue. Solid-State Hydrogen Storage Properties of Ti-V-Nb-Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni) [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1113-1122. |
[13] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[14] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[15] | Zhu Wang, Guo-Hui Zhang, Yong Yao, Xue-Hua Fan, Jie Jin, Lei Zhang, Yan-Xia Du. Corrosion Behaviour of a Non-equiatomic CoCrFeNiMo High-Entropy Alloy in H2S-Containing and H2S-Free Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 366-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||