Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (10): 1311-1320.DOI: 10.1007/s40195-020-01073-5
					
													Jiahua Zhang1, Yi Yang1( ), Sheng Cao2, Zhiqiang Cao1, Dmytro Kovalchuk3, Songquan Wu1, Enquan Liang4, Xi Zhang4, Wei Chen5, Fan Wu5, Aijun Huang6
), Sheng Cao2, Zhiqiang Cao1, Dmytro Kovalchuk3, Songquan Wu1, Enquan Liang4, Xi Zhang4, Wei Chen5, Fan Wu5, Aijun Huang6
												  
						
						
						
					
				
Received:2020-02-22
															
							
																	Revised:2020-03-18
															
							
															
							
																	Online:2020-10-10
															
							
																	Published:2020-10-20
															
						Contact:
								Yi Yang   
													Jiahua Zhang, Yi Yang, Sheng Cao, Zhiqiang Cao, Dmytro Kovalchuk, Songquan Wu, Enquan Liang, Xi Zhang, Wei Chen, Fan Wu, Aijun Huang. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1311-1320.
Add to citation manager EndNote|Ris|BibTeX
| Ti | Al | V | Fe | O | N | H | C | Y | 
|---|---|---|---|---|---|---|---|---|
| Bal. | 6.26 | 4.25 | 0.22 | 0.12 | 0.0055 | 0.0014 | 0.0091 | < 0.005 | 
Table 1 Chemical composition of the deposited structure (wt%)
| Ti | Al | V | Fe | O | N | H | C | Y | 
|---|---|---|---|---|---|---|---|---|
| Bal. | 6.26 | 4.25 | 0.22 | 0.12 | 0.0055 | 0.0014 | 0.0091 | < 0.005 | 
 
																													Fig. 3 a Engineering tensile stress- strain curves of 2-bead wall, b ultimate tensile strength versus total elongation to failure for Ti-6Al-4V titanium alloy fabricated by different wire additive manufacturing processes
| Direction | UTS (MPa) | YS (MPa) | EL (%) | 
|---|---|---|---|
| Z | 972.5 ± 2.5 | 842.5 ± 2.5 | 19.0 ± 1.0 | 
| X | 982.5 ± 7.5 | 858.0 ± 8.0 | 18.5 ± 0.5 | 
Table 2 Room temperature tensile properties of 2-bead wall after heat treatment
| Direction | UTS (MPa) | YS (MPa) | EL (%) | 
|---|---|---|---|
| Z | 972.5 ± 2.5 | 842.5 ± 2.5 | 19.0 ± 1.0 | 
| X | 982.5 ± 7.5 | 858.0 ± 8.0 | 18.5 ± 0.5 | 
 
																													Fig. 4 SEM images of the tensile fracture surfaces for 2-bead specimen in X direction: a entire fracture surface, showing three zones, i.e., fibrous zone, radial zone and shear lip zone; b-d corresponding enlarged images of the squared regions in a
 
																													Fig. 5 Optical macrographs in Y-Z sections of 5-bead a and 2-bead walls b after three-stage heat treatment, showing large regions of fine equiaxed prior β grain zones, c microstructure of the substrate, d1-d6 magnified β grain morphologies in the rectangles labeled as 1-6 in d row in b, e1-e6 magnified β grain morphologies in the rectangles labeled as 1-6 in e row in b
 
																													Fig. 6 EBSD orientation maps of β phase and α phase morphology in Y-Z section of 2-bead wall after three-stage heat treatment: a columnar β grain zone, b equiaxed β grain zone. a-1, b-1 the 2nd layer; a-2, b-2 the 18th layer; a-3, b-3 the 32th layer. The dashed lines indicate the original β grain boundaries. The insets are (001) pole figures of β grains
 
																													Fig. 7 EBSD orientation maps of α phase in Y-Z section of 2-bead wall after three-stage heat treatment: a columnar β grain zone, b equiaxed β grain zone. a-1, b-1 The 2nd layer; a-2, b-2 the 18th layer; a-3, b-3 the 32th layer
 
																													Fig. 8 Microstructures of the as-built 2-bead wall, showing a martensitic microstructure: a, c CGβ zone, b, d EGβ zone, a, b optical macrographs, c, d SEM macrographs
 
																													Fig. 9 a Illustration of Ti-6Al-4V solidification map, showing that columnar β grains and equiaxed β grains can be obtained via controlling temperature gradient (G) and solidification rate (R). The different color shapes in a illustrating G vs. R in different sites of 2-bead wall during deposition in b
| [1] | L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, Acta Mater. 58, 3303(2010) DOI URL | 
| [2] | M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616, 1 (2014) | 
| [3] | X.Z. Shi, S.Y. Ma, C.M. Liu, Q.R. Wu, J.P. Lu, Y.D. Liu, W.T. Shi, Mater. Sci. Eng. A 684, 196 (2017) | 
| [4] | N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35, 242(2019) | 
| [5] | S. Cao, Q.D. Hu, A.J. Huang, Z.E. Chen, M. Sun, J.H. Zhang, C.X. Fu, Q.B. Jia, C.V.S. Lim, R.R. Boyer, Y. Yang, X.H. Wu, J. Mater. Sci. Technol. 35, 1578(2019) | 
| [6] | T. Sun, Y. Liu, S.J. Li, J.P. Li, Acta Metall. Sin. -Engl. Lett. 32, 869(2019) | 
| [7] | M.J. Bermingham, L. Nicastro, D. Kent, Y. Chen, M.S. Dargusch, J. Alloys Compd. 753, 247(2018) | 
| [8] | J. Wang, X. Lin, J.Q. Li, Y.L. Hu, Y.H. Zhou, C. Wang, Q.G. Li, W.D. Huang, Mater. Sci. Eng. A 754, 735 (2019) | 
| [9] | B. Baufeld, O.V.D. Biest, Sci. Technol. Adv. Mater. 10, 015008(2009) DOI URL PMID | 
| [10] | G. Lütjering, J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007) | 
| [11] | B. Baufeld, O.V.D. Biest, S. Dillien, Metall. Mater. Trans. A 41, 1917 (2010) | 
| [12] | S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I. Todd, Metall. Mater. Trans. A 41, 3422 (2010) | 
| [13] | S.Y. Gao, Y.Z. Zhang, L.K. Shi, B.L. Du, M.Z. Xi, H.Z. Ji, Acta Metall. Sin. -Engl. Lett. 20, 171(2007) | 
| [14] | B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309(2015) | 
| [15] | F.D. Wang, S. Williams, P. Colegrove, A.A. Antonysamy, Metall. Mater. Trans. A 44, 968 (2013) | 
| [16] | Y. Xie, M. Gao, F.D. Wang, C. Zhang, K.D. Hao, H.Z. Wang, X.Y. Zeng, Mater. Sci. Eng. A 709, 265 (2018) | 
| [17] | Z.X. Li, C.M. Liu, T.Q. Xu, L. Ji, D.H. Wang, J.P. Lu, S.Y. Ma, H.L. Fan, Mater. Sci. Eng. A 742, 287 (2019) | 
| [18] | J.R. Hönnige, P.A. Colegrove, B. Ahmad, M.E. Fitzpatrick, S. Ganguly, T.L. Lee, S.W. Williams, Mater. Des. 150, 193(2018) | 
| [19] | C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Addit. Manuf. 22, 672(2018) | 
| [20] | M.J. Bermingham, D.H. StJohn, J Krynen, S. Tedman-Jones, M.S. Dargusch, Acta Mater. 168, 261(2019) | 
| [21] | S. Mereddy, M.J. Bermingham, D.H. StJohn, M.S. Dargusch, J. Alloys Compd. 695, 2097 (2017) | 
| [22] | C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11, 142(2020) URL PMID | 
| [23] | P.A. Colegrove, H.E. Coules, J. Fairman, F. Martina, T. Kashoob, H. Mamash, L.D. Cozzolino, J. Mater. Process. Technol. 213, 1782(2013) | 
| [24] | J.R. Hönnige, P. Colegrove, S. Williams, Procedia Eng. 216, 8(2017) | 
| [25] | F.D. Wang, S. Williams, M. Rush, Int. J. Adv. Manuf. Technol. 57, 597(2011) | 
| [26] | D. Kovalchuk, O. Ivasishin, Profile electron beam 3D metal printing, in Additive Manufacturing for the Aerospace Industry, ed. by F.Fores, R Boyer (Elsevier, Amstel Dam, 2019), pp. 213-233 | 
| [27] | Q.R. Wu, Z.S. Ma, G.S. Chen, C.M. Liu, D.X. Ma, S.Y. Ma, J. Manuf. Process. 27, 198(2017) | 
| [28] | B. Baufeld, E. Brandl, O.V.D. Biest, J. Mater. Process. Technol. 211, 1146(2011) | 
| [29] | S. Sundaresan, G.D.J. Ram, G.M. Reddy, Mater. Sci. Eng. A 262, 88 (2002) | 
| [30] | P. Åkerfeldt, M.L. Antti, R. Pederson, Mater. Sci. Eng. A 674, 428 (2016) | 
| [31] | M.J. Bermingham, J. Thomson-Larkins, D.H. StJohn, M.S. Dargusch, J. Mater. Process. Technol. 258, 29(2018) | 
| [32] | S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Acta Mater. 57, 2470(2009) | 
| [33] | S.L. Semiatin, T.R. Bieler, Acta Mater. 49, 3565(2001) | 
| [34] | Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132, 82(2017) | 
| [35] | P.A. Kobryn, S.L. Semiatin, J. Mater. Process. Technol. 135, 330(2003) | 
| [36] | J. Wang, X. Lin, J.T. Wang, H.O. Yang, Y.H. Zhou, C. Wang, Q.G. Li, W.D. Huang, J. Alloys Compd. 768, 97(2018) | 
| [37] | R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Acta Mater. 162, 239(2019) | 
| [38] | Z. Zhao, J. Chen, H. Tan, G.H. Zhang, X. Lin, W.D. Huang, Scr. Mater. 146, 187(2018) | 
| [1] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. | 
| [2] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. | 
| [3] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. | 
| [4] | Shuang-Jian Chen, Xiang-Xi Ye, D.K. L.Tsang, Li Jiang, Chao-Wen Li, Kun Yu, Zhi-Jun Li . Microstructure and Its Influence on the Mechanical Properties of Ni-28W-6Cr-Based Alloy-Welded Joints by GTAW [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1032-1040. | 
| [5] | An-Wen Zhang, Yan Yang, Sha Zhang, Dong Zhang, Wei-Hong Zhang, Da-Wei Han, Feng Qi, Yuan-Guo Tan, Xin Xin, Wen-Ru Sun. Distribution of Phosphorus and Its Effects on Precipitation Behaviors and Tensile Properties of IN718C Cast Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 887-899. | 
| [6] | Yi-Qiang Mu, Chang-Shuai Wang, Wen-Long Zhou, Lan-Zhang Zhou. Tensile Properties of Cast Alloy IN625 in Relation to d Phase Precipitation [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 535-540. | 
| [7] | Dong-Wei Ao, Xing-Rong Chu, Shu-Xia Lin, Yang Yang, Jun Gao. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1287-1296. | 
| [8] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang. Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 630-640. | 
| [9] | Jun-Gang Ren, Lei Wang, Dao-Kui Xu, Li-Yang Xie, Zhan-Chang Zhang. Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 228-237. | 
| [10] | Hong-Bo B,Li-Min Dong,Zhi-Qiang Zhang,Dong-Sheng Xu,Rui Yang. Effects of Zr Content on the Microstructures and Tensile Properties of Ti-3Al-8V-6Cr-4Mo-xZr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 722-726. | 
| [11] | Lin Geng, Lujun Huang. High Temperature Properties of Discontinuously Reinforced Titanium Matrix Composites: A Review [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 787-797. | 
| [12] | Junhui Nie, Jianzhong Fan, Shaoming Zhang, Shaohua Wei, Tao Zuo, Zili Ma, Zhaobing Xiang. Tensile and Fracture Properties of 15 vol% SiCp/2009Al Composites Fabricated by Hot Isostatic Pressing and Hot Extrusion Processes [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 875-884. | 
| [13] | Song Pengchao, Li Xifeng, Ding Wei, Chen Jun. Electroplastic Tensile Behavior of 5A90 Al–Li Alloys [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 642-648. | 
| [14] | Alatorre N., Ambriz R. R., Noureddine B., Amrouche A., Talha A., Jaramillo D.. Tensile Properties and Fusion Zone Hardening for GMAW and MIEA Welds of a 7075-T651 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 694-704. | 
| [15] | Zhonggang SUN, Guoqing CHEN, Xuesong FU, Yaoqi WANG, Hongliang HOU,Wenlong ZHOU. TEM investigations on hydrogen induced phasetransformation in Ti-6Al-4V alloys [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 357-362. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			