Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (11): 1749-1775.DOI: 10.1007/s40195-023-01593-w
Yuhong Zhao1,9,10(), Hui Xing2(
), Lijun Zhang3(
), Houbing Huang4(
), Dongke Sun5(
), Xianglei Dong6(
), Yongxing Shen7(
), Jincheng Wang8(
)
Received:
2023-05-14
Revised:
2023-06-28
Accepted:
2023-07-10
Online:
2023-11-10
Published:
2023-08-18
Contact:
Yuhong Zhao, zhaoyuhong@nuc.edu.cn;
Hui Xing, huixing@nwpu.edu.cn;
Lijun Zhang, lijun.zhang@csu.edu.cn;
Houbing Huang, hbhuang@bit.edu.cn;
Dongke Sun, China.dksun@seu.edu.cn;
Xianglei Dong, dxl881112@zzu.edu.cn;
Yongxing Shen, yongxing.shen@sjtu.edu.cn;
Jincheng Wang, jchwang@nwpu.edu.cn
About author:
Hui Xing, Lijun Zhang, Houbing Huang, Dongke Sun, Xianglei Dong and Yongxing Shen have been contributed equally to this work.
Yuhong Zhao, Hui Xing, Lijun Zhang, Houbing Huang, Dongke Sun, Xianglei Dong, Yongxing Shen, Jincheng Wang. Development of Phase-Field Modeling in Materials Science in China: A Review[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1749-1775.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Number of papers on the phase-field model all over the world during the year of 1900-2022; b top 20 rank of countries in publishing papers on the phase-field model
Fig. 2 a Number of papers in China during the year of 1900-2022; b number of papers from the communication of materials science in China during the year of 1900-2022
Fig. 5 A Dendrite structures when the equilibrium volume fractions of the liquid phase are about 35% (left) and 19% (right) in the Ni-Al-Nb ternary system. Points A-C on the left are remelting, coalescing, and smoothing, respectively. Points A-E on the right are coalescence, smoothing, Rayleigh instability, rounding, and shrinking away, respectively [77]. B Two representative morphologies of the solid-liquid interface, are the seaweed growth (left) and the dendritic growths (right) [18]. C Typical microstructures of the competitive growth in 2D (top) or 3D (bottom) [98,99]. D The role of interfacial energy anisotropy on dendrite morphology [106]. E Comparison of experimental and simulation results in the interdendritic zone [117]
Fig. 6 A In situ synchrotron XRD and phase-field simulation of phase transformations in LA147. a XRD datasets of as-quenched LA147 during natural aging. b Phase-field simulated and experimentally observed data of the spinodal of wavelength. c Simulated structure order parameter within Al-rich zones as a function of natural aging time and d corresponding microstructural evolution [153]. B Rafted microstructures from phase-field with a elastic and b viscoplastic [162]. C Microstructure with a bimodal initial particle size distribution: a-b simulation results. c-d SEM images of the KSN microcrystalline powders [173]
Fig. 7 A The microstructural evolution during the precipitation process. a Configuration of a pure edge dislocation loop; b–g microstructures of $\alpha $ precipitates at t = 1 × 10−3 s, 3 × 10−3 s and 5 × 10−3 s viewed from the $+ z$ direction b–d at $ T = {\text{1070 K }}$[195]. B Evolution of morphology of the premelting domain and of dislocation configuration in softening crystal phase domains. a $\varepsilon = { 0}{\text{.0570}}$; b $ \varepsilon = {0}{\text{.0600}}$; c $\varepsilon = {0}{\text{.0636}}$; d $\varepsilon = {0}{\text{.0642}}$ [31]. C Phase-field-crystal method guides the design of strength and ductility synergistic mechanism of Cu92Al5Ni3 (wt%) [200]. a Schematic diagram of microstructure under different treatment methods. b ${\text{II}}_{{1}} $ yellow dislocation pair slip mechanism. c ${\text{II}}_{{1}} { }$ yellow dislocation pair decomposition process. d ${\text{V}}_{{3}} $ and ${\text{ VI}}_{{3}}$ dislocation annihilation mechanism. e ${\text{II}}_{{1}}$ and ${\text{III}}_{{1}} $ dislocation annihilation mechanism. D Atomic arrangement of order domain boundary in B2-FeAl alloy. a $\text{(002)}\Vert \text{(002)}\updownarrow\text{1/2[010]}$ interface, b ${\text{(110)}\Vert \text{(110)}}_{\text{Fe}}\updownarrow\text{1/2 [1}\stackrel{\mathrm{-}}{1}\text{0]}$ interface, (c) $\text{(110)}\Vert \text{(110)}\updownarrow\text{1/2 [1}\stackrel{\mathrm{-}}{1}\text{0]}$ interface [212]. E 3D simulation results of Fe-15 at.% Cr alloy show the distribution of a′ precipitates under irradiation and (001) plane different dislocation densities [152]
Fig. 8 Elastic interaction energies between an H-phase particle and 12 individual variants of the B19’ martensite with contour value a1 − 0.267 kJ/mol, a2 − 0.240 kJ/mol. Concentration field (at.%) of b1 Ni and b2 Hf around a growing H-phase particle (Aging at 550 °C for 1296 s) b3 Ni and b4 Hf around an H-phase particle at equilibrium (aging at 550 °C for over 3 h) viewed from the same [110] direction for comparison [217]
Fig. 9 Typical microstructures due to the 3D phase-field simulations performed in a domain with 48 × 48 × 48 nm3 for thin films deposited with three different deposition rates (denoted as V) corresponding to the different gas-solid transition velocities and incident vapor rates at the deposition time of 10 min. (Ref. [233])
Fig. 10 Microstructure evolution of agglomeration for a 30-nm NiSi film on a monocrystal Si substrate annealing at 600 °C: a-b simulation results with orientation field and phase-field, c in situ SEM results (Ref. [235])
Fig. 11 Temporal evolution of domain structure formation in a two-dimensional model. a 40 steps; b 80 steps; c 120 steps; d 240 steps [236]. e Schematic of the ferroelectric thin film with 180° domain structures as solid-state refrigerators [240]. f [001] and [111] butterfly loops for Pb (Zr0.8Ti0.2) O3 [241]. g Nonlinear dielectric constant versus applied equiaxial strain [243]
Fig. 12 Strain distributions and spin textures in patterned La0.67Sr0.33MnO3 (LSMO) wires. a Cross-sectional view (shown in the black dotted circle in schematics on top of (b)) of the LSMO lithographically fabricated sample modeled color scale map showing the relaxation of the strain as a function of width. b Calculated strain profile across the LSMO fabricated samples as a function of the normalized position across the wires of different widths. c, f Topography of 0.5 and 1.0 μm wide LSMO wires taken at 4 K using contact mode atomic force microscope (AFM). d Magnetic force microscopy (MFM) image of 0.5 μm wide wire recorded at 4 K after zero-field cooling (ZFC) at the same place where the topographic image was taken. g MFM image of 1.0 μm wide wire recorded at 4 K in zero fields after ZFC. e, h Phase-field modeling of domains in 0.5 and 1.0 μm wide wires [249]
Fig. 14 Topology of crack propagation in different materials. A Polymer material [269]; B fiber-reinforced composite laminate [283]; C geomaterials [288]; D cantilevered beam [297]
Fig. 15 A Phase-field of dynamic fracture of a pressurized cylinder [299]. B Force-displacement curves and the phase-field at some instant during cyclic loading [305]. C Different crack patterns under impact loading for different values of plastic work threshold with and without the triaxiality [312]
[1] | J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 250 (1958) |
[2] |
S.M. Allen, J.W. Cahn, Acta Mater. 20, 423 (1972)
DOI URL |
[3] |
A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys. Rev. A 45, 7424 (1992)
DOI URL |
[4] |
L.Q. Chen, W. Yang, Phys. Rev. B 50, 15752 (1994)
PMID |
[5] | D.N.A. Cogswell, Massachusetts Institute of Technology (2010) |
[6] |
N. Xie, Y. Wang, X.F. Xiao, X.L. Feng, Comput. Math. Appl. 142, 84 (2023)
DOI URL |
[7] |
Q. Wang, Q. Yue, C.B. Huang, W. Zhou, X.L. Chang, Comp. Mater. Sci. 214, 111747 (2022)
DOI URL |
[8] |
J.J. Zhao, J.J. Li, X.B. Hu, Y.J. Wang, Y.M. Chen, F. He, Z.J. Wang, Z.L. Zhao, J.C. Wang, Comp. Mater. Sci. 214, 111694 (2022)
DOI URL |
[9] |
Z. Wang, P.W. Liu, Y.H. Xiao, X.Y. Cui, Z. Hu, L. Chen, J. Manuf. Sci. Eng. 141, 081004 (2019)
DOI URL |
[10] |
Y.Q. Guo, S. Luo, W.L. Wang, M.Y. Zhu, J. Mater. Res. Technol. 17, 2059 (2022)
DOI URL |
[11] |
C.S. Zhu, X.T. Guo, L. Feng, C.U. Idemudia, X. Jin, AIP Adv. 10, 025026 (2020)
DOI URL |
[12] |
Y.H. Zhao, N.P.J. Comput, Mater. 94, 9 (2023)
DOI URL |
[13] |
Z.J. Hong, V. Viswanathan, ACS Energy Lett. 5, 3254 (2020)
DOI URL |
[14] |
A. Karma, Phys. Rev. Lett. 87, 115701 (2001)
DOI URL |
[15] |
J.H. Jeong, N. Goldenfeld, J.A. Dantzig, Phys. Rev. E 64, 041602 (2001)
DOI URL |
[16] |
W.Z. Sun, Y. Xie, R. Yan, S.D. Ma, H.B. Dong, T. Jing, Metall. Mater. Trans. B 50, 2487 (2019)
DOI |
[17] |
L.L. Wang, X.B. Wang, H.Y. Wang, X. Lin, W.D. Huang, Acta Phys. Sin. 61, 148104 (2012)
DOI URL |
[18] | H. Xing, X.L. Dong, H.J. Wu, G.H. Hao, J.Y. Wang, C.L. Chen, K.X. Jin, Sci. Rep-UK 6, 1 (2016) |
[19] | P.W. Liu, Z. Wang, Y.H. Xiao, M.F. Horstemeyer, X.Y. Cui, L. Chen, Addit. Manuf. 26, 22 (2019) |
[20] |
H. Xing, X.L. Dong, J.Y. Wang, K.X. Jin, Metall. Mater. Trans. B 49, 1547 (2018)
DOI |
[21] |
A. Zhang, Z.P. Guo, S.M. Xiong, China Foundry 14, 373 (2017)
DOI URL |
[22] | C. Yang, S.L. Li, X.T. Wang, J.S. Wang, H.B. Huang, Comput. Mater. Sci. 171, 5 (2020) |
[23] |
X.Z. Li, L.D. Mei, T. Sun, Y.Q. Su, J.J. Guo, H.Z. Fu, Trans. Nonferrous Met. Soc. China 20, 302 (2010)
DOI URL |
[24] |
S.Y. Pan, M.F. Zhu, M. Rettenmayr, Acta Mater. 132, 565 (2017)
DOI URL |
[25] |
K.R. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88, 245701 (2002)
DOI URL |
[26] | T. Zhou, X. Ji, L.Y. Shi, X.M. Zhang, S.W. Joo, J. Chem. Technol. Biotechnol. 96, 448 (2021) |
[27] |
S. Tang, Z.J. Wang, Y.L. Guo, J.C. Wang, Y.M. Yu, Y.H. Zhou, Acta Mater. 60, 5501 (2012)
DOI URL |
[28] |
C. Guo, J.C. Wang, J.J. Li, Z.J. Wang, Y.H. Huang, J.W. Gu, X. Lin, Acta Mater. 145, 175 (2018)
DOI URL |
[29] |
X. Shuai, Z.J. Wang, H. Mao, S. Tang, Y. Kong, Y. Du, J. Mater. Sci. 56, 12700 (2021)
DOI |
[30] | X.L. Tian, Y.H. Zhao, D.W. Peng, Q.W. Guo, Z. Guo, H. Hou, T. Nonfer, Metal. Soc. 31, 1175 (2021) |
[31] |
Y.J. Gao, L.L. Huang, Q.Q. Deng, W.Q. Zhou, Z.R. Luo, K. Lin, Acta Mater. 117, 238 (2016)
DOI URL |
[32] | A.G. Khachaturyan, Soviet Physics Solid State 9, 2040 (1968) |
[33] | A.G. Khachaturyan, (John Wiley and Sons, New York, 1983) |
[34] |
L.Q. Chen, A.G. Khachaturyan, Acta Metall. Mater. 39, 2533 (1991)
DOI URL |
[35] |
L.Q. Chen, Y.H. Zhao, Prog. Mater. Sci. 124, 100868 (2022)
DOI URL |
[36] |
D. Tourret, H. Liu, J. Llorca, Prog. Mater. Sci. 123, 100810 (2022)
DOI URL |
[37] |
A. Saxena, Y. Wu, T. Lookman, S.R. Shenoy, A.R. Bishop, Physica A 239, 18 (1997)
DOI URL |
[38] |
Y. Wang, A.G. Khachaturyan, Acta Mater. 45, 759 (1997)
DOI URL |
[39] |
R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140, 141 (2000)
DOI URL |
[40] |
Y.M. Yu, B.G. Liu, Phys Rev E 69, 021601 (2004)
DOI URL |
[41] | Y.M. Yu, B.G. Liu, Phys. Rev. B 70, 3352 (2004) |
[42] |
Y.M. Yu, R. Backofen, A. Voigt, Phys. Rev. E 77, 051605 (2008)
DOI URL |
[43] |
Y.M. Yu, B.G. Liu, Phys. Rev. B 77, 195327 (2008)
DOI URL |
[44] |
Y.M. Yu, B.G. Liu, A. Voigt, Phys. Rev. B 79, 235317 (2009)
DOI URL |
[45] |
X.L. Dong, H. Xing, C.L. Chen, B.C. Luo, Z. Chen, R.L. Zhang, K.X. Jin, J. Cryst. Growth 406, 59 (2014)
DOI URL |
[46] |
X.L. Dong, H. Xing, C.L. Chen, J.Y. Wang, K.X. Jin, Phys. Lett. A 379, 2452 (2015)
DOI URL |
[47] |
S. Fashu, J. Yang, L.S. Yang, N. Wang, Eur. Phys. J. E 43, 1 (2020)
DOI |
[48] |
P. Keblinski, A. Maritan, F. Toigo, R. Messier, J.R. Banavar, Phys. Rev. E 53, 759 (1996)
PMID |
[49] |
Y.Q. Zhou, C.Q. Guo, G.H. Dong, H.X. Liu, Z.Y. Zhou, B. Niu, D. Wu, T. Li, H.B. Huang, M. Liu, Nano Lett. 22, 2859 (2022)
DOI URL |
[50] |
D. Liu, J. Wang, H.M. Jafri, X.Y. Wang, X.M. Shi, D.S. Liang, C. Yang, X.W. Cheng, H.B. Huang, NPJ Quantum Mater. 7, 1 (2022)
DOI |
[51] |
F. Li, D.B. Lin, Z.B. Chen, Z.X. Cheng, J.L. Wang, C.C. Li, Z. Xu, Q.W. Huang, X.Z. Liao, L.Q. Chen, T.R. Shrout, S.J. Zhang, Nat. Mater. 17, 349 (2018)
DOI |
[52] |
L.Y. Yang, H.B. Huang, Z.Z. Xi, L.M. Zheng, S.Q. Xu, G. Tian, Y.Z. Zhai, F.F. Guo, L.P. Kong, Y.G. Wang, W.M. Lu, L. Yuan, M.L. Zhao, H.W. Zheng, G. Liu, Nat. Commun. 13, 2444 (2022)
DOI |
[53] |
Z.Y. Li, Z.H. Shen, X. Yang, X.M. Zhu, Y. Zhou, L.J. Dong, C.X. Xiong, Q. Wang, Compos. Sci. Technol. 202, 108591 (2021)
DOI URL |
[54] |
C.C. Hu, Z. Zhang, X.X. Cheng, H.B. Huang, Y.G. Shi, L.Q. Chen, J. Mater. Sci. 56, 1713 (2021)
DOI |
[55] |
H.M. Jafri, M. Sulaman, J. Wang, C. Yang, X.M. Shi, H.B. Huang, J. Supercond. Nov. Magn. 35, 409 (2022)
DOI |
[56] | C.S. Wang, X.X. Ke, J.J. Wang, R.R. Liang, Z.L. Luo, Y. Tian, D. Yi, Q.T. Zhang, J. Wang, X.F. Han, G. Van Tendeloo, L.Q. Chen, C.W. Nan, R. Ramesh, J.X. Zhang, Nat. Commun. 7, 1 (2016) |
[57] |
Y.L. Zhang, C.S. Wang, H.B. Huang, J.D. Lu, R.R. Liang, J. Liu, R.C. Peng, Q.T. Zhang, Q.H. Zhang, J. Wang, L. Gu, X.F. Han, L.Q. Chen, R. Ramesh, C.W. Nan, J.X. Zhang, Sci. Bull. 65, 1260 (2020)
DOI URL |
[58] |
I.S. Aranson, V.A. Kalatsky, V.M. Vinokur, Phys. Rev. Lett. 85(1), 118 (2000)
PMID |
[59] |
A. Karma, D.A. Kessler, H. Levine, Phys. Rev. Lett. 87, 045501 (2001)
DOI URL |
[60] |
B. Bourdin, G.A. Francfort, J.J. Marigo, J. Mech. Phys. Solids 48(4), 797 (2000)
DOI URL |
[61] |
G.A. Francfort, J.J. Marigo, J. Mech. Phys. Solids 46, 1319 (1998)
DOI URL |
[62] |
Y.M. Yu, G.C. Yang, D.W. Zhao, Y.L. Lu, Acta Phys. Sin. 50, 2423 (2001)
DOI URL |
[63] | Y.M. Yu, G.C. Yang, D.W. Zhao, Y.L. Lu, Prog. Nat. Sci. 12, 212 (2002) |
[64] | Y.M. Yu, G.C. Yang, D.W. Zhao, Y.L. Lu, Trans. Nonferr. Metal. Soc. 12, 1063 (2002) |
[65] |
D.W. Zhao, J.F. Li, Acta Phys. Sin. 58, 7094 (2009)
DOI URL |
[66] |
Y.T. Zhang, Y. Chi, C.Q. Hu, China Foundry 14, 184 (2017)
DOI URL |
[67] |
C.S. Zhu, Z.P. Wang, J. Tao, R.Z. Xiao, Acta Phys. Sin. 55, 1502 (2006)
DOI URL |
[68] |
Z.Q. Li, H. Xing, W.J. Lu, X.L. Dong, Mater. Lett. 311, 131618 (2022)
DOI URL |
[69] |
M.E. Li, G.C. Yang, Y.H. Zhou, Acta Phys. Sin. 54, 454 (2005)
DOI URL |
[70] |
W.J. Lu, H. Xing, Q.Y. Zhang, Z.F. Shen, Q. An, J. Mater. Res. Technol. 16, 1413 (2022)
DOI URL |
[71] | H. Xing, H.X. Jing, X.L. Dong, L. Wang, Y.S. Han, R. Hu, Mater. Today Commun. 30, 103170 (2022) |
[72] | M.E. Li, Z.Y. Xiao, G.C. Yang, Y.H. Zhou, Chinese Phys. B 15, 219 (2006) |
[73] |
C.S. Zhu, F. Li, Z.P. Wang, R.Z. Xiao, Acta Phys. Sin. 58, 8055 (2009)
DOI URL |
[74] |
W.P. Chen, H. Hou, Y.T. Zhang, W. Liu, Y.H. Zhao, J. Mater. Res. Technol. 24, 8401 (2023)
DOI URL |
[75] | W.P. Chen, Y.H. Zhao, S. Yang, D. Zhang, H. Hou, Adv. Compos. Hybrid Ma. 4, 371 (2021) |
[76] |
R.J. Zhang, T. Jing, J. Wang, B.C. Liu, Acta Mater. 54, 2235 (2006)
DOI URL |
[77] |
J.C. Wang, G.C. Yang, Acta Mater. 56, 4585 (2008)
DOI URL |
[78] |
J.C. Wang, Y.X. Zhang, Y.J. Yang, J.J. Li, G.C. Yang, Sci. China Ser. E 52, 344 (2009)
DOI URL |
[79] |
I. Steinbach, F. Pezzolla, B. Nestler, M. SeeBelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, Physica D 94, 135 (1996)
DOI URL |
[80] |
I. Steinbach, Model Simul. Mater. Sc. 17, 073001 (2009)
DOI URL |
[81] |
M. Wei, L.J. Zhang, M.J. Yang, K. Li, S.H. Liu, P.Z. Zhao, Y. Du, Int. J. Mater. Res. 109, 91 (2018)
DOI URL |
[82] |
M. Wei, Y. Tang, L.J. Zhang, W.H. Sun, Y. Du, Metall. Mater. Trans. A 46, 3182 (2015)
DOI URL |
[83] |
Z.J. Wang, J.C. Wang, G.C. Yang, Scr. Mater. 61, 915 (2009)
DOI URL |
[84] |
Z.J. Wang, J.C. Wang, J.J. Li, G.C. Yang, Y.H. Zhou, Phys. Rev. E 84, 041604 (2011)
DOI URL |
[85] |
Z.J. Wang, J.J. Li, J.C. Wang, Y.H. Zhou, Acta Mater. 60, 1957 (2012)
DOI URL |
[86] | H. Xing, X.L. Dong, C.L. Chen, J.Y. Wang, L.F. Du, K.X. Jin, Int. J. Heat Mass Tran. 90, 811 (2015) |
[87] |
H. Xing, L.M. Zhang, K.K. Song, H.M. Chen, K.X. Jin, Int. J. Heat Mass Tran. 104, 607 (2017)
DOI URL |
[88] |
H. Xing, K. Ankit, X.L. Dong, H.M. Chen, K.X. Jin, Int. J. Heat Mass Tran. 117, 1107 (2018)
DOI URL |
[89] |
S.K. Liu, C.W. Guo, Y.H. Fan, X.L. Dong, H.L. Zhao, H. Xing, Y.L. Lu, Comput. Mater. Sci. 203, 111171 (2022)
DOI URL |
[90] |
Y. Chen, A.A. Bogno, N.M. Xiao, B. Billia, X.H. Kang, H. Nguyen-Thi, X.H. Luo, D.Z. Li, Acta Mater. 60, 199 (2012)
DOI URL |
[91] |
Y. Chen, A.A. Bogno, B. Billia, X.H. Kang, H. Nguyen-Thi, D.Z. Li, X.H. Luo, J.M. Debierre, Isij Int. 50, 1895 (2010)
DOI URL |
[92] |
F.Y. Yu, Y.H. Wei, X.B. Liu, Int. J. Heat Mass Tran. 142, 118450 (2019)
DOI URL |
[93] |
S.N. Geng, J. Ping, L.Y. Guo, X.S. Gao, G.Y. Mi, Int. J. Heat Mass Tran. 149, 119252 (2019)
DOI URL |
[94] |
W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, L. Song, Mater. Des. 164, 107553 (2019)
DOI URL |
[95] |
S. Chu, C.W. Guo, T.X. Zhang, Y.T. Wang, J.J. Li, Z.J. Wang, J.C. Wang, Y. Qian, H.Y. Zhao, Eur. Phys. J. E 43, 1 (2020)
DOI |
[96] |
A. Zhang, J. Du, X. Zhang, Z. Guo, Q. Wang, S. Xiong, Metall. Mater. Trans. A 51, 1023 (2020)
DOI |
[97] |
A. Zhang, Z.P. Guo, B. Jiang, J.L. Du, C.H. Wang, G.S. Huang, D.F. Zhang, F. Liu, S.M. Xiong, F.S. Pan, Acta Mater. 214, 117005 (2021)
DOI URL |
[98] |
J.J. Li, Z.J. Wang, Y.Q. Wang, J.C. Wang, Acta Mater. 60, 1478 (2012)
DOI URL |
[99] |
C.W. Guo, J.J. Li, H.L. Yu, Z.J. Wang, X. Lin, J.C. Wang, Acta Mater. 136, 148 (2017)
DOI URL |
[100] |
C.W. Guo, J.J. Li, Z.J. Wang, J.C. Wang, Mater. Des. 151, 141 (2018)
DOI URL |
[101] |
H. Xing, M.Y. Ji, X.L. Dong, Y.M. Wang, L.M. Zhang, S.M. Li, Mater. Des. 185, 108250 (2020)
DOI URL |
[102] |
L. Wang, N. Wang, N. Provatas, Acta Mater. 126, 302 (2017)
DOI URL |
[103] |
S.N. Geng, P. Jiang, X.Y. Shao, G.Y. Mi, H. Wu, Y.W. Ai, C.M. Wang, C. Han, R. Chen, W. Liu, Y.H. Zhang, Acta Mater. 160, 85 (2018)
DOI URL |
[104] |
M.Y. Wang, T. Jing, B.C. Liu, Scr. Mater. 61, 777 (2009)
DOI URL |
[105] |
M.Y. Wang, Y.J. Xu, Q.W. Zheng, S.J. Wu, T. Jing, N. Chawla, Metall. Mater. Trans. A 45, 2562 (2014)
DOI URL |
[106] |
M. Yang, S.M. Xiong, Z. Guo, Acta Mater. 92, 8 (2015)
DOI URL |
[107] |
M. Yang, S.M. Xiong, Z. Guo, Acta Mater. 112, 261 (2016)
DOI URL |
[108] |
J.L. Du, A. Zhang, Z.P. Guo, M.H. Yang, M. Li, F. Liu, S.M. Xiong, Acta Mater. 161, 35 (2018)
DOI URL |
[109] |
X.L. Dong, Y.L. Lu, H.L. Zhao, Y.S. Han, Eur. Phys. J. E 43, 1 (2020)
DOI |
[110] |
J.B. Zhang, H.F. Wang, W.W. Kuang, Y.C. Zhang, S. Li, Y.H. Zhao, D.M. Herlach, Acta Mater. 148, 86 (2018)
DOI URL |
[111] |
Y.H. Zhao, B. Zhang, H. Hou, W.P. Chen, M. Wang, J. Mater. Sci. Technol. 35, 1044 (2019)
DOI URL |
[112] | Y.H. Zhao, K.X. Liu, H. Hou, L.Q. Chen, Mater. Design 216, 110555 (2022) |
[113] | Y.C. Zhu, J.C. Wang, G.C. Yang, D.W. Zhao, Acta Metall. Sin. 43, 194 (2007) |
[114] | X.Z. Li, Y.Q. Su, J.J. Guo, S.P. Wu, H.Z. Fu, Acta Metall. Sin. 42, 599 (2006) |
[115] | Y.Q. Su, X.Z. Li, J.J. Guo, S.P. Wu, H.Z. Fu, Acta Metall. Sin. 42, 606 (2006) |
[116] |
S.Y. Pan, M.F. Zhu, Acta Mater. 146, 63 (2018)
DOI URL |
[117] |
C. Yang, Q.Y. Xu, X.L. Su, B.C. Liu, Acta Mater. 175, 286 (2019)
DOI URL |
[118] |
C. Yang, X. Wang, H.M. Jafri, J. Wang, H. Huang, Comput. Mater. Sci. 178, 109626 (2020)
DOI URL |
[119] |
L.J. Zhang, E.V. Danilova, I. Steinbach, D. Medvedev, P.K. Galenko, Acta Mater. 61, 4155 (2013)
DOI URL |
[120] |
A.A. Wheeler, W.J. Boettinger, G.B. McFadden, Phys. Rev. E 47, 1893 (1993)
PMID |
[121] |
D. Danilov, B. Nestler, Acta Mater. 54, 4659 (2006)
DOI URL |
[122] |
I. Steinbach, L.J. Zhang, M. Plapp, Acta Mater. 60, 2689 (2012)
DOI URL |
[123] |
L.J. Zhang, I. Steinbach, Acta Mater. 60, 2702 (2012)
DOI URL |
[124] |
V.G. Lebedev, E.V. Abramova, D.A. Danilov, Int. J. Mater. Res. 101, 473 (2010)
DOI URL |
[125] |
P.K. Galenko, E.V. Abramova, D. Jou, D.A. Danilov, V.G. Lebedev, D.M. Herlach, Phys. Rev. E 84, 041143 (2011)
DOI URL |
[126] |
T. Pinomaa, N. Provatas, Acta Mater. 168, 167 (2019)
DOI |
[127] |
K. Karayagiz, L. Johnson, R. Seede, V. Attaria, B. Zhang, X.Q. Huang, S. Ghosh, T. Duong, I. Karamn, A. Elwany, R. Arróyave, Acta Mater. 185, 320 (2020)
DOI URL |
[128] | P.I. O’Toole, M.J. Patel, C. Tang, D. Gunasegaram, A.B. Murphy, I.S. Cole, Addit. Manuf. 48, 102353 (2021) |
[129] | Y.J. Wang, S. Chu, Z.J. Wang, J.J. Li, J.C. Wang, Acta Metall. Sin. 35, 425438 (2022) |
[130] |
L.J. Zhang, M. Stratmann, Y. Du, B. Sundman, I. Steinbach, Acta Mater. 88, 156 (2015)
DOI URL |
[131] |
Y.H. Zhao, Front. Mater. 10, 1145833 (2023)
DOI URL |
[132] | Y.H. Zhao, Northwestern Polytechnical University (2003) |
[133] | Y.H. Zhao, Y.Y. Sun, H. Hou, Prog. Nat. Sci. 32, 3 (2022) |
[134] |
Y.B. Yang, Y.H. Zhao, X.L. Tian, H. Hou, Acta Phys. Sin. 69, 140201 (2020)
DOI URL |
[135] |
Y.H. Zhao, X.L. Tian, B.J. Zhao, Y.Y. Sun, H.J. Guo, M.Y. Dong, H. Liu, X.J. Wang, Z.H. Guo, A. Umar, H. Hou, Sci. Adv. Mater. 10, 1793 (2018)
DOI URL |
[136] |
K.L. Wang, W.K. Yang, X.C. Shi, H. Hou, Y.H. Zhao, Acta Phys. Sin. 72, 076102 (2023)
DOI URL |
[137] | S.F. Miao, Z. Chen, Y. Wang, C. Xu, M.Y. Zhang, Acta Metall. Sin. 45, 630 (2009) |
[138] |
Y.L. Lu, G.M. Lu, F. Liu, Z. Chen, K.K. Tang, J. Alloys Compd. 637, 149 (2015)
DOI URL |
[139] | Z. Chu, Z. Chen, Y.X. Wang, H.Y. Xu, Y.L. Lu, Rare Metal. Mat. Eng. 35, 1461 (2006) |
[140] |
J.X. Zhang, Z. Chen, M.J. Liang, Y.X. Wang, Q.B. Lai, Trans. Nonferrous Met. Soc. China 18, 930 (2008)
DOI URL |
[141] |
W. Liu, Y.H. Zhao, Y.T. Zhang, C. Shuai, L.W. Chen, Z.Q. Huang, H. Hou, Int. J. Plasticity. 164, 103573 (2023)
DOI URL |
[142] |
T.Z. Xin, S. Tang, F. Ji, L.Q. Cui, B.B. He, X. Lin, X.L. Tian, H. Hou, Y.H. Zhao, M. Ferry, Acta Mater. 239, 118248 (2022)
DOI URL |
[143] |
Y.H. Zhao, J. Mater. Res. Technol. 21, 546 (2022)
DOI URL |
[144] |
J.W. Cahn, J. Chem. Phys. 42, 93 (1965)
DOI URL |
[145] |
D. Fan, L.Q. Chen, J. Am. Ceram. Soc. 78, 1680 (1995)
DOI URL |
[146] | B.L. Zhang, Harbin Institute of Technology (2006) |
[147] |
J.J. Zhou, J. Zhong, L. Chen, L.J. Zhang, Y. Du, Z.K. Liu, P.H. Mayrhofer, Calphad 56, 92 (2017)
DOI URL |
[148] |
J.J. Zhou, L.J. Zhang, L. Chen, Surf. Coat. Tech. 311, 231 (2017)
DOI URL |
[149] |
J.J. Zhou, L.J. Zhang, L. Chen, Y. Du, Z.K. Liu, J. Min. Metall. B 53, 85 (2017)
DOI URL |
[150] |
Z.L. Yan, Y.S. Li, X.R. Zhou, Y.D. Zhang, R. Hu, J. Alloys Compd. 725, 1035 (2017)
DOI URL |
[151] |
W. Liu, Y.S. Li, X.C. Wu, Z.Y. Hou, K. Hu, J. Mater. Eng. Perform. 25, 1924 (2016)
DOI URL |
[152] | W.K. Yang, X.A. Jiang, X.L. Tian, H. Hou, Y.H. Zhao, J. Mater. Res. Technol. 22, (2022) |
[153] | B.J. Zhao, Y.H. Zhao, Y.Y. Sun, W.K. Yang, H. Hou, Acta Metall. Sin. 55, 5 (2019) |
[154] | L. Ma, University of Science and Technology of China (2020) |
[155] | T.Z. Xin, Y.H. Zhao, R. Mahjoub, J.X. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, Sci. Adv. 7, 3039 (2021) |
[156] | Y.H. Zhao, Z. Chen, Y.X. Wang, Y.L. Lu, Prog. Nat. Sci. 14, 12 (2004) |
[157] |
H. Hou, Y.H. Zhao, Y.H. Zhao, Mater. Sci. Eng. A-Struct. 499, 1 (2009)
DOI URL |
[158] | X.J. Liu, Y.C. Chen, Y. Lu, J.J. Han, W.W. Xu, Y.H. Guo, J.X. Yu, Z.B. Wei, C.P. Wang, Acta Metall. Sin. 56, 1 (2019) |
[159] |
Y.Y. Sun, Y.H. Zhao, B.J. Zhao, W.K. Yang, X.L. Li, J. Mater. Sci. 54, 11263 (2019)
DOI |
[160] |
Y.Y. Sun, Y.H. Zhao, B.J. Zhao, Z. Guo, X.L. Tian, W.K. Yang, H. Hou, Calphad 69, 101759 (2020)
DOI URL |
[161] |
J.L. Li, Z. Li, Q. Wang, C. Dong, P.K. Liaw, Acta Mater. 197, 10 (2020)
DOI URL |
[162] |
A. Gaubert, Y.L. Bouar, A. Finel, Philos. Mag. 90, 375 (2010)
DOI URL |
[163] |
H. Mao, Y. Kong, X. Shuai, S. Tang, Y. Du, J. Min. Metall. Sect. B-Metall. 55, 101 (2019)
DOI URL |
[164] |
N. Zhou, C. Shen, M.J. Mills, Y. Wang, Acta Mater. 55, 5369 (2007)
DOI URL |
[165] |
Y.S. Li, Y.Z. Yu, X.L. Cheng, G. Chen, Mat. Sci. Eng. A-Struct. 528, 8628 (2011)
DOI URL |
[166] |
Y.Q. Zhang, C. Yang, Q.Y. Xu, Comput. Mater. Sci. 172, 109331 (2020)
DOI URL |
[167] |
Y. Chen, X.H. Kang, N.M. Xiao, C.W. Zheng, D.Z. Li, Acta Phys. Sin. 58, 124 (2009)
DOI URL |
[168] |
R. He, M.T. Wang, J.F. Jin, Y.P. Zong, Chin. Phys. B 26, 128201 (2017)
DOI URL |
[169] |
K. Chang, H. Chang, Results Phys 12, 1262 (2019)
DOI URL |
[170] | X.G. Zhang, Y.P. Zong, M.T. Wang, Y. Wu, Acta Phys. Sin. 60, 6 (2011) |
[171] |
Z.G. Mei, L.Y. Liang, Y.S. Kim, T. Wiencek, E. O’Hare, A.M. Yacout, G. Hofman, M. Anitescu, J Nucl Mater 473, 300 (2016)
DOI URL |
[172] |
J.B. Gao, M. Wei, L.J. Zhang, Y. Du, Z.M. Liu, B.Y. Huang, Metall. Mater. Trans. A 49, 6442 (2018)
DOI |
[173] |
Y.M. Zhang, L.L. Liu, Adv. Powder Technol. 32, 3395 (2021)
DOI URL |
[174] | Y.B. Huang, Y.X. Wang, Z. Chen, Rare Metal. Mat. Eng. 41, 1751 (2012) |
[175] | Y.J. Gao, H.L. Zhang, X. Jin, C.G. Huang, Z.R. Luo, Acta Metall. Sin. 45, 1190 (2009) |
[176] |
K. Chang, J. Kwon, C.K. Rhee, Comput. Mater. Sci. 142, 297 (2018)
DOI URL |
[177] |
C. Liu, P. Shanthraj, J.D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, D. Raabe, Acta Mater. 178, 146 (2019)
DOI |
[178] | L.F. Du, P. Zhang, L.L. Wang, B. Zheng, H.L. Du, Comput. Mater. Sci. 131, 196 (2017) |
[179] |
Y.H. Song, M.T. Wang, Y.P. Zong, R. He, J.F. Jin, Materials 11, 1903 (2018)
DOI URL |
[180] |
I. Loginova, J. Odqvist, G. Amberg, J. Ågren, Acta Mater. 51, 1327 (2003)
DOI URL |
[181] |
I. Loginova, J. Gren, G. Amberg, Acta Mater. 52, 4055 (2004)
DOI URL |
[182] |
C.J. Huang, D.J. Browne, Metall. Mater. Trans. A 37, 589 (2006)
DOI URL |
[183] |
L. Zhang, Y. Shen, H. Wan, X.C. Xiong, L.T. Zhang, J Alloys Compd. 650, 239 (2015)
DOI URL |
[184] |
C.Y. Zhang, H. Chen, J.N. Zhu, C. Zhang, Z.G. Yang, Acta Metall. Sin. 33, 975 (2020)
DOI |
[185] | J. Zhang, Shanghai Jiao Tong University (2017) |
[186] |
L.Y. Fan, H.K. Dong, L. Yang, Z.G. Yang, H. Chen, Metall. Mater. Trans. A 54, 1055 (2023)
DOI |
[187] |
H. Chen, B. Zhu, M. Militzer, Metall. Mater. Trans. A 47, 3873 (2016)
DOI URL |
[188] | G.I. Taylor, P. Roy, Soc. A-Math. Phy. 145, 388 (1934) |
[189] |
Y.U. Wang, Y.M. Jin, A.M. Cuitiño, A.G. Khachaturyan, Acta Mater. 49, 1847 (2001)
DOI URL |
[190] |
Y.L. Zhao, Z. Chen, J. Long, T. Yang, Acta Metall. Sin. 27, 1 (2014)
DOI URL |
[191] |
D.Q. Wan, J.C. Wang, G.F. Wang, L. Lin, Z.G. Feng, G.C. Yang, Acta Metall. Sin. 22, 1 (2009)
DOI URL |
[192] | H.Q. Li, X.N. Wang, H.B. Zhang, X.L. Tian, H. Hou, Y.H. Zhao, Front. Mater. 9, 342 (2022) |
[193] | Y.H. Zhao, K.X. Liu, H.B. Zhang, X.L. Tian, Q.L. Jiang, V. Murugadoss, H. Hou, Adv. Compos. Hybrid Ma. 5, 2546 (2022) |
[194] |
J.H. Ke, A. Boyne, Y. Wang, C.R. Kao, Acta Mater. 79, 396 (2014)
DOI URL |
[195] |
D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88, 218 (2015)
DOI URL |
[196] |
D. Qiu, R. Shi, P. Zhao, D. Zhang, W. Lu, Y. Wang, Acta Mater. 112, 347 (2016)
DOI URL |
[197] |
P.Y. Zhao, T.S.E. Low, Y.Z. Wang, S.R. Niezgoda, Acta Mater. 191, 253 (2020)
DOI URL |
[198] |
S. Hu, Z. Chen, G.G. Yu, W. Xi, Y.Y. Peng, Comput. Mater. Sci. 124, 195 (2016)
DOI URL |
[199] | H.J. Guo, Y.H. Zhao, Y.Y. Sun, J.Z. Tian, H. Hou, K.W. Qi, X.L. Tian, Micro Nanostructures 129, 163 (2019) |
[200] |
X.L. Tian, Y.H. Zhao, T. Gu, Y.L. Guo, F.Q. Xu, H. Hou, Mater. Sci. Eng. A-Struct. 849, 143485 (2022)
DOI URL |
[201] |
W.W. Kuang, H.F. Wang, X. Li, J.B. Zhang, Q. Zhou, Y.H. Zhao, Acta Mater. 159, 16 (2018)
DOI URL |
[202] | Y.H. Zhao, J.H. Jing, L.W. Chen, H. Hou, Acta Metall. Sin. 57, 1107 (2021) |
[203] |
I. Singer-Loginova, H.M. Singer, Rep. Prog. Phys. 71, 106501 (2008)
DOI URL |
[204] | L.Y. Tang, Y.X. Wang, Z. Chen, Y.L. Lu, J. Zhang, Rare Met. 23, 279 (2004) |
[205] |
H.L. Hu, W.P. Dong, M.Y. Zhang, M.J. Li, Z. Chen, J. Alloys Compd. 894, 162420 (2022)
DOI URL |
[206] |
Y.H. Zhao, Intermetallics 144, 107528 (2022)
DOI URL |
[207] | Y.S. Li, Z. Chen, Y.L. Lu, Y.X. Wang, Z. Chu, Rare Metal. Mat. Eng. 35, 200 (2006) |
[208] | M.Y. Zhang, Z. Chen, Y.X. Wang, Y.-l. Lu, L.P. Zhang, Y. Zhao, Trans. Nonferrous Met. Soc. China (2009) |
[209] |
Y.S. Li, Z. Chen, Y.L. Lu, Y.X. Wang, Trans. Nonferrous Met. Soc. China 16, 91 (2006)
DOI URL |
[210] |
K. Wang, S. Hu, Y.X. Wang, J. Mater. Sci. 54, 14440 (2019)
DOI |
[211] |
K. Wang, Y.X. Wang, J. Alloy. Compd. 824, 153923 (2020)
DOI URL |
[212] | K. Wang, Northwestern Polytechnical University (2021) |
[213] | T. Cao, North University of China (2022) |
[214] |
D. Wang, Q.L. Liang, S.S. Zhao, P.Y. Zhao, T.L. Zhang, L.S. Cui, Y.Z. Wang, Acta Mater. 164, 99 (2019)
DOI URL |
[215] |
Z. Li, F. Xiao, H. Chen, R.H. Hou, X.R. Cai, X.J. Jin, Acta Mater. 211, 116883 (2021)
DOI URL |
[216] |
Y. Gao, N. Zhou, D. Wang, Y. Wang, Acta Mater. 68, 93 (2014)
DOI URL |
[217] |
T.W. Yu, Y.P. Gao, L. Casalena, P. Anderson, M. Mills, Y.Z. Wang, Acta Mater. 208, 116651 (2021)
DOI URL |
[218] |
H. She, Y.L. Liu, B. Wang, D.C. Ma, Comput. Mech. 52, 949 (2013)
DOI URL |
[219] |
H.B. Huang, W.Q. He, G.P. Cao, J.J. Wang, Z.H. Liu, X.Q. Ma, J. Alloys Compd. 689, 507 (2016)
DOI URL |
[220] |
S.S. Cui, X.W. Zuo, N.L. Chen, Y.H. Rong, J.F. Wan, Mater. Des. 109, 88 (2016)
DOI URL |
[221] |
S.S. Cui, J.F. Wan, Y.H. Rong, J.H. Zhang, Comput. Mater. Sci. 139, 285 (2017)
DOI URL |
[222] |
J. Zhu, H. Wu, D. Wang, Y. Gao, H. Wang, Y. Hao, R. Yang, T.Y. Zhang, Y. Wang, Int. J. Plasticity 89, 110 (2017)
DOI URL |
[223] |
C. Wei, C.B. Ke, S.B. Liang, S. Cao, H.T. Ma, Comput. Mater. Sci. 172, 109292 (2019)
DOI URL |
[224] |
S.S. Cui, Y.G. Cui, J.F. Wan, Y.H. Rong, J.H. Zhang, Comput. Mater. Sci. 121, 131 (2016)
DOI URL |
[225] |
X. Zhang, G. Shen, C.W. Li, J.F. Gu, Mater. Des. 188, 108426 (2020)
DOI URL |
[226] |
X. Zhang, G. Shen, J. Xu, J.F. Gu, Metall. Mater. Trans. A 51, 4853 (2020)
DOI |
[227] |
D. Wang, S. Hou, Y. Wang, X.D. Ding, S. Ren, X.B. Ren, Y.Z. Wang, Acta Mater. 66, 349 (2014)
DOI URL |
[228] |
J.M. Zhu, J. Luo, Y.Z. Sun, Comput. Mater. Sci. 172, 109326 (2020)
DOI URL |
[229] | J. Man, J.H. Zhang, Y.H. Rong, Appl. Phys. Lett. 96, 3 (2010) |
[230] | P.C. Song, W.B. Liu, L. Chen, C. Zhang, Z.G. Yang, Acta Metall. Sin. 52, 1000 (2016) |
[231] |
J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W. Craig Carter, Acta Mater. 51, 6035 (2003)
DOI URL |
[232] |
J.A. Stewart, D.E. Spearot, Comput. Mater. Sci. 123, 111 (2016)
DOI URL |
[233] |
S.L. Yang, J. Zhong, M. Chen, L.J. Zhang, Coatings 9, 15 (2019)
DOI URL |
[234] |
R. Dai, S.L. Yang, T.D. Zhang, J. Zhong, L. Chen, C.M. Deng, L.J. Zhang, Front. Mater. 9, 924294 (2022)
DOI URL |
[235] |
J.B. Gao, A. Malchère, S.L. Yang, A. Campos, T. Luo, K. Quertite, P. Steyer, C. Girardeaux, L.J. Zhang, D. Mangelinck, Acta Mater. 223, 117491 (2022)
DOI URL |
[236] |
J. Wang, S.Q. Shi, L.Q. Chen, Y.L. Li, T.Y. Zhang, Acta Mater. 52, 749 (2004)
DOI URL |
[237] |
J.J. Wang, X.Q. Ma, Q. Li, J. Britson, L.Q. Chen, Acta Mater. 61, 7591 (2013)
DOI URL |
[238] |
N. Liu, Y. Su, G.J. Weng, J. Appl. Phys. 113, 214106 (2013)
DOI URL |
[239] |
W.J. Chen, Y. Zheng, Acta Mater. 88, 41 (2015)
DOI URL |
[240] | B. Li, J.B. Wang, X.L. Zhong, F. Wang, Y.K. Zeng, Y.C. Zhou, Europhys. Lett. 102, 4 (2013) |
[241] |
Y.C. Song, A.K. Soh, L. Lu, J. Phys. D -Appl. Phys. 41, 082002 (2008)
DOI URL |
[242] |
Y. Zhang, C.K. Jeong, J.J. Wang, H.J. Sun, F. Li, G.Z. Zhang, L.Q. Chen, S.J. Zhang, W. Chen, Q. Wang, Nano Energy 50, 35 (2018)
DOI URL |
[243] |
J. Wang, Y.L. Li, L.Q. Chen, T.Y. Zhang, Acta Mater. 53, 2495 (2005)
DOI URL |
[244] |
J. Wang, G.P. Li, T. Shimada, H. Fang, T. Kitamura, Appl. Phys. Lett. 103, 242413 (2013)
DOI URL |
[245] |
G.P. Li, J. Wang, T. Shimada, H. Fang, T. Kitamura, J. Appl. Phys. 115, 203911 (2014)
DOI URL |
[246] |
J. Wang, J. Zhang, T. Shimada, T. Kitamura, J. Phys. Condens Matter. 25, 226002 (2013)
DOI URL |
[247] |
J. Wang, Y. Shi, M. Kamlah, Phys. Rev. B 97, 024429 (2018)
DOI URL |
[248] |
Y.N. Shi, J. Wang, Phys. Rev. B 97, 224428 (2018)
DOI URL |
[249] |
I.A. Malik, H. Huang, Y. Wang, X. Wang, C. Xiao, Y. Sun, R. Ullah, Y. Zhang, J. Wang, M.A. Malik, I. Ahmed, C. Xiong, S. Finizio, M. Kläui, P. Gao, J. Wang, J. Zhang, Sci. Bull. 65, 201 (2020)
DOI URL |
[250] | H. Amor, J.J. Marigo, C. Maurini, J. Mesh. Phys. Solids 57, 1209 (2009) |
[251] |
C. Miehe, F. Welschinger, M. Hofacker, Int. J. Numer. Meth. Eng. 83, 1273 (2010)
DOI URL |
[252] |
M. Strobl, T. Seelig, PAMM 15, 155 (2015)
DOI URL |
[253] |
C. Steinke, M. Kaliske, Comput. Mech. 63, 1019 (2019)
DOI |
[254] |
J.Y. Wu, V.P. Nguyen, H. Zhou, Y. Huang, Comput. Method Appl. M. 358, 112629 (2020)
DOI URL |
[255] |
G. Zhang, T.F. Guo, X. Guo, S. Tang, W.K. Liu, Comput. Method Appl. M. 357, 112573 (2019)
DOI URL |
[256] |
Y. Liu, C. Cheng, V. Ziaei Rad, Y.X. Shen, Eng. Fract. Mech. 241, 107358 (2020)
DOI URL |
[257] |
T. You, Q.Z. Zhu, P.F. Li, J.F. Shao, Int. J. Plasticity 124, 71 (2020)
DOI URL |
[258] |
V. Hakim, A. Karma, Phys. Rev. Lett. 95, 235501 (2004)
DOI URL |
[259] |
B. Li, C. Peco, D. Millán, I. Arias, M. Arroyo, Int. J. Numer. Meth. Eng. 102, 711 (2014)
DOI URL |
[260] |
J.D. Clayton, J. Knap, Comput. Mater. Sci. 98, 158 (2015)
DOI URL |
[261] |
C. Miehe, L.M. Schaenzel, J. Mech. Phys. Solids 65, 93 (2014)
DOI URL |
[262] |
C. Hesch, K. Weinberg, Int. J. Numer. Meth. Eng. 99, 906 (2014)
DOI URL |
[263] |
S. Tang, G. Zhang, T. Guo, X. Guo, W.K. Liu, Comput. Method Appl. M. 347, 477 (2019)
DOI URL |
[264] |
M.F. Badawy, M.A. Msekh, K.M. Hamdia, M.K. Steiner, T. Lahmer, T. Rabczuk, Probabilist. Eng. Mech. 50, 64 (2017)
DOI URL |
[265] |
C. Miehe, M. Hofacker, L.M. Schaenzel, F. Aldakheel, Comput. Method Appl. M. 294, 486 (2015)
DOI URL |
[266] |
R. Shen, H. Waisman, L. Guo, Comput. Method Appl. M. 346, 862 (2019)
DOI URL |
[267] |
B. Yin, M. Kaliske, Comput. Mech. 65, 293 (2020)
DOI |
[268] |
F.A. Denli, O. Gültekin, G.A. Holzapfel, H. Dal, Comput. Mech. 65, 1 (2020)
DOI |
[269] |
J. Wu, C. McAuliffe, H. Waisman, G. Deodatis, Comput. Method Appl. M. 312, 596 (2016)
DOI URL |
[270] |
A. Kumar, G.A. Francfort, O. Lopez-Pamies, J. Mech. Phys. Solids 112, 523 (2018)
DOI URL |
[271] |
R. Brighenti, T. Rabczuk, X. Zhuang, Eur. J. Mech. A -Solid 85, 104092 (2020)
DOI URL |
[272] |
B.B. Yin, L.W. Zhang, Eng. Fract. Mech. 211, 321 (2019)
DOI |
[273] |
T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, Eng. Fract. Mech. 139, 18 (2015)
DOI URL |
[274] | Z.J. Yang, B.B. Li, J.Y. Wu, Eng. Fract. Mech. 208, 150 (2019) |
[275] | L. Wang, Y. Huang, K. Jiang, Numer. Math.- Theory Me. 13, 372 (2020) |
[276] |
P. Tarafder, S. Dan, S. Ghosh, Comput. Mech. 66, 723 (2020)
DOI |
[277] |
T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, Comput. Method Appl. M. 312, 567 (2015)
DOI URL |
[278] |
M. Paggi, J. Reinoso, Comput. Method Appl. M. 321, 145 (2017)
DOI URL |
[279] |
A. Quintanas-Corominas, J. Reinoso, E. Casoni, A. Turon, J.A. Mayugo, Compos. Struct 220, 899 (2019)
DOI |
[280] |
A. Dean, J. Reinoso, N.K. Jha, E. Mahdi, R. Rolfes, Theor. Appl. Fract. Mec. 106, 102495 (2020)
DOI URL |
[281] |
X. Li, D.Y. Chu, Y. Gao, Z.L. Liu, Eng. Comput. 36, 307 (2019)
DOI URL |
[282] | P. Zhang, X. Hu, T.Q. Bui, W. Yao, Int. J. Mesh. Sci. 161-162, 105008 (2020) |
[283] |
P. Zhang, Y.Q. Feng, T.Q. Bui, X.F. Hu, W.A. Yao, Compos. Struct 232, 111551 (2020)
DOI URL |
[284] |
P. Zhang, W.A. Yao, X.F. Hu, T.Q. Bui, Eng. Fract. Mech. 241, 107371 (2020)
DOI URL |
[285] | T.K. Mandal, P. Nguyen, J.Y. Wu, Int. J. Mesh. Sci. 188, 105941 (2020) |
[286] |
P. Zhang, X.F. Hu, S.T. Yang, W.A. Yao, Eng. Fract. Mech. 209, 105 (2019)
DOI |
[287] | B. Bourdin, C.P. Chukwudozie, K. Yoshioka, Soc. Petroleum Eng., pp. SPE- 159154-MS (2012) |
[288] |
M. Mollaali, V. Ziaei-Rad, Y.X. Shen, J. Nat. Gas. Sci. Eng. 70, 102905 (2019)
DOI URL |
[289] |
T. You, H. Waisman, Q. Zhu, Int. J. Plasticity 136, 102836 (2020)
DOI URL |
[290] |
S. Zhou, X. Zhuang, T. Rabczuk, Eng. Geol. 240, 189 (2018)
DOI URL |
[291] |
S. Zhou, X. Zhuang, T. Rabczuk, Comput. Method Appl. M. 350, 169 (2019)
DOI URL |
[292] |
D.C. Feng, J.Y. Wu, Eng. Fract. Mech. 197, 66 (2018)
DOI URL |
[293] |
G. Zhang, T.F. Guo, Z. Zhou, S. Tang, X. Guo, Eng. Fract. Mech. 212, 180 (2019)
DOI |
[294] |
J.Y. Wu, T.K. Mandal, V.P. Nguyen, Comput. Method Appl. M. 358, 112614 (2020)
DOI URL |
[295] |
H. Ulmer, M. Hofacker, C. Miehe, Pamm 12, 171 (2012)
DOI URL |
[296] |
F. Amiri, D. Millán, Y. Shen, T. Rabczuk, M. Arroyo, Theor. Appl. Fract. Mec. 69, 102 (2014)
DOI URL |
[297] |
W.Y. Lai, J. Gao, Y.H. Li, M. Arroyo, Y.X. Shen, Comput. Method Appl. M. 361, 112787 (2020)
DOI URL |
[298] | R. Alessi, M. Ambati, T. Gerasimov, S. Vidoli, L.D. Lorenzis, Comparison of Phase-Field Models of Fracture Coupled with Plasticity (Springer International Publishing, Cham, 2018) |
[299] |
M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, Comput. Method Appl. M. 217-220, 77 (2012)
DOI URL |
[300] |
V.P. Nguyen, J.Y. Wu, Comput. Method Appl. M. 340, 1000 (2018)
DOI URL |
[301] |
H.L. Ren, X.Y. Zhuang, C. Anitescu, T. Rabczuk, Comput. Struct. 217, 45 (2019)
DOI |
[302] |
J.L. Boldrini, D.M.E.A. Barros, L.R. Chiarelli, F.G. Fumes, M.L. Bittencourt, Comput. Method Appl. M. 312, 395 (2016)
DOI URL |
[303] |
G. Amendola, M. Fabrizio, J.M. Golden, J. Therm. Stresses 39, 487 (2016)
DOI URL |
[304] | Y.S. Lo, M.J. Borden, K. Ravi-Chandar, C.M. Landis, J. Mesh. Phys. Solids 132, 103684 (2019) |
[305] |
R. Alessi, S. Vidoli, L.D. Lorenzis, Eng. Fract. Mech. 190, 53 (2018)
DOI URL |
[306] |
P. Carrara, M. Ambati, R. Alessi, L.D. Lorenzis, Comput. Method Appl. M. 361, 112731 (2020)
DOI URL |
[307] |
J. Ulloa, J. Wambacq, R. Alessi, G. Degrande, S. Francois, Comput. Method Appl. M. 373, 113473 (2021)
DOI URL |
[308] |
M. Seiler, T. Linse, P. Hantschke, M. Kästner, Eng. Fract. Mech. 224, 106807 (2019)
DOI URL |
[309] |
P.J. Loew, L.H. Poh, B. Peters, L.A.A. Beex, Comput. Method Appl. M. 370, 113247 (2020)
DOI URL |
[310] |
C. McAuliffe, H. Waisman, Int. J. Plasticity 65, 131 (2015)
DOI URL |
[311] |
C. Mcauliffe, H. Waisman, Comput. Method Appl. M. 305, 173 (2016)
DOI URL |
[312] |
M.J. Borden, T.J.R. Hughes, C.M. Landis, A. Anvari, I.J. Lee, Comput. Method Appl. M. 312, 130 (2016)
DOI URL |
[313] |
M. Ambati, R. Kruse, L.D. Lorenzis, Comput. Mech. 57, 149 (2016)
DOI URL |
[314] |
D.Y. Chu, X. Li, Z.L. Liu, J.B. Cheng, T. Wang, Z.J. Li, Z. Zhuang, Eng. Fract. Mech. 212, 197 (2019)
DOI URL |
[315] |
T. Wang, Z.L. Liu, Y.N. Cui, X. Ye, X.M. Liu, R. Tian, Z. Zhuang, Eng. Fract. Mech. 232, 107028 (2020)
DOI URL |
[316] |
T. Wang, Z.L. Liu, Y.N. Cui, X. Ye, X.M. Liu, R. Tian, Z. Zhuang, Eng. Fract. Mech. 231, 107027 (2020)
DOI URL |
[317] |
D.Y. Chu, X. Li, Z.L. Liu, Int. J. Fracture 208, 115 (2017)
DOI URL |
[318] |
S.R. Hao, Y.H. Chen, J.B. Cheng, Y.X. Shen, Finite Elem. Anal. Des. 199, 103652 (2022)
DOI URL |
[319] |
S.R. Hao, Y.X. Shen, J.B. Cheng, Eng. Fract. Mech. 261, 108142 (2022)
DOI URL |
[320] |
M. Ambati, T. Gerasimov, L.D. Lorenzis, Comput. Mech. 55, 383 (2015)
DOI URL |
[321] | J.Y. Wu, V.P. Nguyen, C.T. Nguyen, D. Sutula, S. Sinaie, Adv. Appl. Mech. 53, 1 (2018) |
[322] |
T.K. Mandal, V.P. Nguyen, J.Y. Wu, Eng. Fract. Mech. 235, 107169 (2020)
DOI URL |
[1] | Liwei Lan, Wenxian Wang, Zeqin Cui, Xiaohu Hao. Unique Duplex Microstructure and Porosity Effect on Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Processed by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1465-1481. |
[2] | Jia-Qi Zheng, Ming-Liang Wang, Wen-Na Jiao, Long-Jiang Zou, Yan Di. Effect of Ti Addition on Microstructure Evolution and Mechanical Properties of Al18Co13Cr10Fe14Ni45 Eutectic High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1493-1501. |
[3] | Zhonghua Jiang, Pei Wang, Dianzhong Li. Role of Solute Rare Earth in Altering Phase Transformations during Continuous Cooling of a Low Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1523-1535. |
[4] | Xiaoyuan Teng, Jianchao Pang, Feng Liu, Chenglu Zou, Xin Bai, Shouxin Li, Zhefeng Zhang. Fatigue Life Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1536-1548. |
[5] | Solomon Kerealme Yeshanew, Chunguang Bai, Qing Jia, Tong Xi, Zhiqiang Zhang, Diaofeng Li, Zhizhou Xia, Rui Yang, Ke Yang. Influence of Hot-Rolling Deformation on Microstructure, Crystalline Orientation, and Texture Evolution of the Ti6Al4V-5Cu Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1261-1280. |
[6] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[7] | Zhenbo Zuo, Rui Hu, Xian Luo, Qingxiang Wang, Chenxi Li, Zhen Zhu, Jian Lan, Shujin Liang, Hongkui Tang, Kang Zhang. Solidification Behavior and Microstructures Characteristics of Ti-48Al-3Nb-1.5Ta Powder Produced by Supreme-Speed Plasma Rotating Electrode Process [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1221-1234. |
[8] | Jikui Liu, Junhua Hou, Fengchao An, Bingnan Qian, Christian H. Liebscher, Wenjun Lu. Characterization of Compositionally Complex Hydrides in a Metastable Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1173-1178. |
[9] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[10] | Zhenyu Feng, Hong Zhong, Bin Yang, Xin Li, Shuangming Li. Improved Hydrogen Storage Properties of Ti23V40Mn37 Alloy Doped with Zr7Ni10 by Rapid Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1211-1219. |
[11] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[12] | Hui Jiang, Li Li, Jianming Wang, Chengbin Wei, Qiang Zhang, Chunjian Su, Huaiming Sui. Wear Properties of Spark Plasma-Sintered AlCoCrFeNi2.1 Eutectic High Entropy Alloy with NbC Additions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 987-998. |
[13] | Dingcong Cui, Qingfeng Wu, Feng Jin, Chenbo Xu, Mingxin Wang, Zhijun Wang, Junjie Li, Feng He, Jinglong Li, Jincheng Wang. Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 611-622. |
[14] | Zhenlin Wang, Beibei Wang, Zhen Zhang, Peng Xue, Yunfei Hao, Yanhua Zhao, Dingrui Ni, Guoqing Wang, Zongyi Ma. Enhanced Fatigue Properties of 2219 Al Alloy Joints via Bobbin Tool Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 586-596. |
[15] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||