Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 926-936.DOI: 10.1007/s40195-023-01523-w
Previous Articles Next Articles
Xiaolong Zhang1, Yue Jiang1, Shupeng Wang1(), Shuo Wang2, Ziqiang Wang1, Zhenglei Yu1, Zhihui Zhang1(
), Luquan Ren1
Received:
2022-10-17
Revised:
2022-11-21
Accepted:
2022-11-21
Online:
2023-06-10
Published:
2023-01-16
Contact:
Shupeng Wang,Xiaolong Zhang, Yue Jiang, Shupeng Wang, Shuo Wang, Ziqiang Wang, Zhenglei Yu, Zhihui Zhang, Luquan Ren. Compression Behavior and Failure Mechanisms of Bionic Porous NiTi Structures Built via Selective Laser Melting[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 926-936.
Add to citation manager EndNote|Ris|BibTeX
Structure | Wall-a (mm) | Diameter-b (mm) | Porosity (%) |
---|---|---|---|
Model 1 | 1.5 | 1.3 | 84.9 |
Model 2 | 1.2 | 1 | 81 |
Model 3 | 1 | 0.8 | 78.4 |
Model 4 | 0.8 | 0.62 | 75.8 |
Table 1 Unit sizes of the models
Structure | Wall-a (mm) | Diameter-b (mm) | Porosity (%) |
---|---|---|---|
Model 1 | 1.5 | 1.3 | 84.9 |
Model 2 | 1.2 | 1 | 81 |
Model 3 | 1 | 0.8 | 78.4 |
Model 4 | 0.8 | 0.62 | 75.8 |
Ni | Fe | C | O | N | Ti |
---|---|---|---|---|---|
55.8 | 0.0083 | 0.0066 | 0.0576 | 0.0067 | Bal. |
Table 2 Chemical composition of the NiTi powder (wt%)
Ni | Fe | C | O | N | Ti |
---|---|---|---|---|---|
55.8 | 0.0083 | 0.0066 | 0.0576 | 0.0067 | Bal. |
Fig. 2 a Morphology of NiTi powder; b statistics of NiTi powder particle size; c XRD result of the NiTi powder; d SLM processed porous NiTi structures
Fig. 3 DSC curves of the different models, including the phase transformation temperatures (PTTs), martensite start temperature (Ms), martensite finish temperature (Mf), austenite start temperature (As) and austenite finish temperature (Af)
PTTs (°C) | Ms | Mf | As | Af |
---|---|---|---|---|
Model 1 | 3.8 | −48.2 | −21.5 | 23.9 |
Model 2 | 14.1 | −55.7 | −24.8 | 39.5 |
Model 3 | 14.6 | −65.8 | −25.4 | 30.2 |
Model 4 | 18.2 | −49.4 | −23.2 | 42.6 |
Table 3 Phase transformation temperatures of the different models
PTTs (°C) | Ms | Mf | As | Af |
---|---|---|---|---|
Model 1 | 3.8 | −48.2 | −21.5 | 23.9 |
Model 2 | 14.1 | −55.7 | −24.8 | 39.5 |
Model 3 | 14.6 | −65.8 | −25.4 | 30.2 |
Model 4 | 18.2 | −49.4 | −23.2 | 42.6 |
Structure | CAD design | SLM details | ||||
---|---|---|---|---|---|---|
Wall-a (μm) | Diameter-b (μm) | Porosity (%) | Minimum size-a-b (μm) | Diameter-b (μm) | Porosity (%) | |
Model 1 | 1500 | 1300 | 84.9 | 222.6 | 1206 | 78.4 |
Model 2 | 1200 | 1000 | 81 | 234.2 | 941.6 | 76.6 |
Model 3 | 1000 | 800 | 78.4 | 263.5 | 736.5 | 71.7 |
Model 4 | 800 | 620 | 75.8 | 329.4 | 539.6 | 63.9 |
Table 4 Size comparison between designed models and SLM processed models
Structure | CAD design | SLM details | ||||
---|---|---|---|---|---|---|
Wall-a (μm) | Diameter-b (μm) | Porosity (%) | Minimum size-a-b (μm) | Diameter-b (μm) | Porosity (%) | |
Model 1 | 1500 | 1300 | 84.9 | 222.6 | 1206 | 78.4 |
Model 2 | 1200 | 1000 | 81 | 234.2 | 941.6 | 76.6 |
Model 3 | 1000 | 800 | 78.4 | 263.5 | 736.5 | 71.7 |
Model 4 | 800 | 620 | 75.8 | 329.4 | 539.6 | 63.9 |
Fig. 5 a Experimental compressive stress-strain curves of the four set of models, b elastic regime of the experimental compressive stress-strain curves of the SLM processed models, c compressive stress-strain curves obtained by FEA, d comparison of the elastic modulus obtained by the experiment and the FEA
Fig. 7 a Analysis of the deformation modes of the SLM processed models (take the Model 4 as an example), b typical compressive strain-stress curves for stretching-dominated porous structures [36]
[1] | S. Gu, T.J. Lu, A.G. Evans, Int. J. Heat Mass Transf. 44, 2163 (2001) |
[2] | Z.W. Xiong, M. Li, S.J. Hao, Y.N. Liu, L.S. Cui, H. Yang, C.B. Cui, D.Q. Jiang, Y. Yang, H.S. Lei, Y.H. Zhang, Y. Ren, X.Y. Zhang, J. Li, A.C.S. Appl, Mater. Interfaces 13, 39915 (2021) |
[3] | Degischer, Hans-Peter, Handbook of Cellular Metals: Production, Processing, Applications, Ringgold Inc, Portland, 2002 |
[4] | G. Del Guercio, M. Galati, A. Saboori, P. Fino, L. Iuliano, Acta Metall. Sin. -Engl. Lett. 33, 183 (2020) |
[5] |
M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, Mater. Sci. Eng. R -Rep. 144, 100606 (2021)
DOI URL |
[6] |
P. Minh-Son, C. Liu, I. Todd, J. Lertthanasarn, Nature 565, 305 (2019)
DOI |
[7] |
T.C. Lin, T.J. Chen, J.S. Huang, Compos. Sci. Technol. 72, 1380 (2012)
DOI URL |
[8] |
V.S. Deshpande, N.A. Fleck, M.F. Ashby, J. Mech. Phys. Solids 49, 1747 (2001)
DOI URL |
[9] | G. Wang, L. Shen, J. Zhao, H. Liang, D. Xie, Z. Tian, C. Wang, A.C.S. Biomater, Sci. Eng. 4, 719(2018) |
[10] |
H.D. Jung, S.W. Yook, T.S. Jang, Y. Li, H.E. Kim, Y.H. Koh, Mat. Sci. Eng. C -Mater. 33, 59(2013)
DOI URL |
[11] | A. Amerinatanzi, N. S. Moghaddam, H. Ibrahim, M. Elahinia, Asme, The effect of porosity type on the mechanical performance of porous NiTi bone implants. In: Paper presented at the Asme 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stowe, Vermont, USA, 28-30 September 2016 |
[12] | M. Dadkhah, M.H. Mosallanejad, L. Iuliano, A. Saboori, Acta Metall. Sin. -Engl. Lett. 34, 1173 (2021) |
[13] |
J. Parthasarathy, B. Starly, S. Raman, A. Christensen, J. Mech. Behav. Biomed. Mater. 3, 249 (2010)
DOI PMID |
[14] |
H. Cho, J. C. Weaver, E. Poeselt, P. J. in't Veld, M. C. Boyce, G. C. Rutledge, Adv. Funct. Mater. 26, 6938 (2016)
DOI URL |
[15] |
S.M. Ahmadi, G. Campoli, S.A. Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans, A.A. Zadpoor, J. Mech. Behav. Biomed. Mater. 34, 106 (2014)
DOI PMID |
[16] |
T.L. Zhong, K.T. He, H.X. Li, L.C. Yang, Mater. Des. 181, 108076 (2019)
DOI URL |
[17] | S. Babaee, B. H. Jahromi, A. Ajdari, H. Nayeb-Hashemi, A. Vaziri, Asme, Mechanical properties of open-cell cellular structures with rhombic dodecahedron cells. In: Paper presented at the ASME International Mechanical Engineering Congress and Exposition (IMECE), Vancouver, CANADA, 2010 |
[18] | W. Xu, A.H. Yu, X. Lu, M. Tamaddon, M.D. Wang, J.Z. Zhang, J.L. Zhang, X.H. Qu, C.Z. Liu, B. Su, Bioact. Mater. 6, 1215 (2021) |
[19] | J.F. Sun, Y.Q. Yang, D. Wang, Adv. Mech. Eng. 4, 27386(2012) |
[20] |
X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials 83, 127 (2016)
DOI URL |
[21] | S.S. Wei, B. Song, Y.J. Zhang, L. Zhang, Y.S. Shi, Acta Metall. Sin. -Engl. Lett. 35, 397 (2022) |
[22] | X.H. Gu, J.X. Zhang, X.L. Fan, L.C. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 327 (2020) |
[23] | J.S. Tian, J. Ma, M. Yan, Z. Chen, J. Shen, J. Wu, Acta Metall. Sin. -Engl. Lett. 34, 476 (2021) |
[24] | R. Huiskes, H. Weinans, B. van Rietbergen, Clin. Orthop. Relat. Res. 274, 124 (1992) |
[25] |
V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)
DOI PMID |
[26] | P.C. McAfee, I.D. Farey, C.E. Sutterlin, K.R. Gurr, K.E. Warden, B.W. Cunningham,Spine 16, S 190 (1991) |
[27] |
M. Niinomi, Sci. Technol. Adv. Mater. 4, 445 (2003)
DOI URL |
[28] |
C.Z. Yan, L. Hao, A. Hussein, P. Young, J. Mech. Behav. Biomed. Mater. 51, 61 (2015)
DOI URL |
[29] |
F. Bartolomeu, M.M. Costa, N. Alves, G. Miranda, F.S. Silva, J. Mech. Behav. Biomed. Mater. 110, 103891 (2020)
DOI URL |
[30] | S. Miyazaki, K. Otsuka, T.W. Duerig, Y. Kohiyama, Mater. Sci. Forum 56-58, 765 (1990) |
[31] |
S. Saedi, A.S. Turabi, M.T. Andani, N.S. Moghaddam, M. Elahinia, H.E. Karaca, Mater. Sci. Eng. A 686, 1 (2017)
DOI URL |
[32] | H. Meier, C. Haberland, J. Frenzel, Structural and functional properties of NiTi shape memory alloys produced by Selective Laser Melting. In: Paper presented at the 5th International Conference on Advanced Research and Rapid Prototyping, Polytechn Inst Leiria, Sch Technol & Management, Leiria, PORTUGAL, 2011 |
[33] |
S. Saedi, N.S. Moghaddam, A. Amerinatanzi, M. Elahinia, H.E. Karaca, Acta Mater. 144, 552 (2018)
DOI URL |
[34] | J.B. Zhan, Y.J. Lu, J.X. Lin, Acta Metall. Sin. -Engl. Lett. 34, 1223 (2021) |
[35] | Q.Q. Zhang, S.J. Hao, Y.T. Liu, Z.W. Xiong, W.Q. Guo, Y. Yang, Y. Ren, L.S. Cui, L.Q. Ren, Z.H. Zhang, Appl. Mater. Today 19, 100547 (2020) |
[36] | L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd edn. (Cambridge University Press, Cambridge, UK, 1997) |
[37] | R.H. Wu, Y.F. Li, M.D. Shen, X.Y. Yang, L. Zhang, X.R. Ke, G.J. Yang, C.Y. Gao, Z.R. Gou, S.Z. Xu, Bioact. Mater. 6, 1242 (2021) |
[38] |
S. Wang, L.L. Liu, K. Li, L.C. Zhu, J. Chen, Y.Q. Hao, Mater. Des. 168, 107643 (2019)
DOI URL |
[39] |
H.Z. Lu, H.W. Ma, X. Luo, Y. Wang, J. Wang, R. Lupoi, S. Yin, C. Yang, J. Mater. Res. Technol. 15, 6797 (2021)
DOI URL |
[40] |
C.L. Tan, S. Li, K. Essa, P. Jamshidi, K.S. Zhou, W.Y. Ma, M.M. Attallan, Int. J. Mach. Tools Manuf. 141, 19 (2019)
DOI URL |
[41] |
C.Z. Yan, L. Hao, A. Hussein, D. Raymont, Int. J. Mach. Tools Manuf. 62, 32 (2012)
DOI URL |
[42] |
R. Havaldar, S.C. Pilli, B.B. Putti, Adv. Biomed. Res. 3, 101(2014)
DOI PMID |
[43] |
K. Osakada, M. Shiomi, Int. J. Mach. Tools Manuf. 46, 1188 (2006)
DOI URL |
[44] |
J. Kadkhodapour, H. Montazerian, A.C. Darabi, A.P. Anaraki, S.M. Ahmadi, A.A. Zadpoor, S. Schmauder, J. Mech. Behav. Biomed. Mater. 50, 180 (2015)
DOI PMID |
[45] | M. F. Ashby, The properties of foams and lattices. In: Paper presented at the Royal-Society Discussion Meeting on Engineered Foams and Porous Materials, London, ENGLAND, 2005 |
[46] |
H. Barber, C.N. Kelly, K. Nelson, K. Gall, J. Mech. Behav. Biomed. Mater. 115, 104243 (2021)
DOI URL |
[1] | Liqing Wang, Zhen Zhang, Zhanyong Zhao, Shenghua Zhang, Peikang Bai. Mixed Grain Structure and Mechanical Property of Ti-6Al-4V-0.5BN (wt%) Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 917-925. |
[2] | Jinyang Liu, Jian Chen, Yang Lu, Xin Deng, Shanghua Wu, Zhongliang Lu. WC Grain Growth Behavior During Selective Laser Melting of WC-Co Cemented Carbides [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 949-961. |
[3] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[4] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. |
[5] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[6] | Shuohong Gao, Xingchen Yan, Cheng Chang, Xinliang Xie, Qingkun Chu, Zhaoyang Deng, Bingwen Lu, Min Liu, Hanlin Liao, Nouredine Fenineche. Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1439-1452. |
[7] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[8] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[9] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[10] | Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li. Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1477-1493. |
[11] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[12] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[13] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[14] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[15] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||