Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1793-1811.DOI: 10.1007/s40195-022-01395-6
Previous Articles Next Articles
Qinghang Wang1,2(), Haowei Zhai1, Hongbo Xia1(
), Lintao Liu2, Junjie He3, Dabiao Xia4, Hong Yang2, Bin Jiang2
Received:
2021-11-02
Revised:
2021-12-30
Accepted:
2022-01-17
Online:
2022-11-10
Published:
2022-04-06
Contact:
Qinghang Wang, wangqinghang@yzu.edu.cn; Hongbo Xia, jssrxhb@126.com
Qinghang Wang, Haowei Zhai, Hongbo Xia, Lintao Liu, Junjie He, Dabiao Xia, Hong Yang, Bin Jiang. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1793-1811.
Add to citation manager EndNote|Ris|BibTeX
Mg | Y | Nd | Zr | Mn |
---|---|---|---|---|
Bal. | 3.90 | 2.20 | 0.40 | 0.01 |
Table 1 Chemical composition of as-received WE43 alloy (wt%)
Mg | Y | Nd | Zr | Mn |
---|---|---|---|---|
Bal. | 3.90 | 2.20 | 0.40 | 0.01 |
Fig. 1 a EBSD inverse pole figure (IPF) map of solid-solution-treated WE43 plate; b schematic illustration showing samples I, II and III machined from solid-solution-treated WE43 plate for cold rolling; c-e (0001) pole figures of samples I, II and III, respectively
Fig. 2 a, e, i EBSD IPF maps containing (0001) pole figures; b, f, j kernel average misorientation (KAM) maps; c, g, k band contrast (BC) maps including three kinds of twin boundaries: {10-12} extension twin boundaries marked by red lines, {10-11} contraction twin boundaries labeled by green lines, and {10-11}-{10-12} double twin boundaries highlighted by blue lines; d, h, l rotation axis and misorientation distribution maps of cold-rolled samples I, II and III, respectively
Fig. 3 EBSD IPF maps of cold-rolled samples I, II and III subjected to annealing for 2, 30 and 60 min, respectively. Recrystallized grains are highlighted by bright colors, and their number fractions and average grain sizes are also measured
Fig. 4 a Number fractions and b average grain sizes of recrystallized grains as functions of annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) in cold-rolled samples I, II and III during annealing
Fig. 5 (0001) and (10-10) pole figures of recrystallized grains from in Fig. 2 in cold-rolled samples I, II and III subjected to annealing for 2, 30 and 60 min, respectively
Fig. 6 Twin-induced and GB-induced SRX behaviors of cold-rolled sample II during annealing for 2 min: a, d EBSD IPF maps from Fig. 3b showing SRX nucleation features inside twins and at trigeminal grain boundaries, respectively; b, e KAM maps corresponding to (a, d), respectively; c, f (0001) pole figures of recrystallized grains labeled in (b, e), respectively
Fig. 7 a–c Number fractions and d–f average grain sizes of four texture components including TCA, TCB, TCC and TCD of recrystallized grains as a function of annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) in cold-rolled samples I, II and III during annealing, respectively
Fig. 8 EBSD IPF maps of cold-rolled samples I, II and III subjected to annealing for 120, 240 and 720 min, respectively. Average grain sizes of recrystallized grains are also measured
Fig. 9 Average grain sizes in cold-rolled samples I, II and III after full recrystallization as a function of annealing time (${t}_{\mathrm{min}}$) a and annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) b
Fig. 10 a A schematic for illustrating the interactions of precipitation and recrystallization during annealing, adapted from Ref. [27]; b-d SEM images of cold-rolled, 30-min-annealed and 720-min-annealed sample I corresponding to positions b, c and d in a, respectively; e-g high-magnified SEM images corresponding to positions e, f and g in c, respectively
Fig. 11 (0001) and (10-10) pole figures of recrystallized grains in cold-rolled samples I, II and III subjected to annealing for 120, 240 and 720 min, respectively
Fig. 12 a–c Number fractions and d–f average grain sizes of four texture components including TCA, TCB, TCC and TCD of recrystallized grains as a function of annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) in cold-rolled samples I, II and III after full recrystallization, respectively
Fig. 13 SRX nucleation kinetics of cold-rolled samples I, II and III during annealing: a–c Vickers hardness values as a function of annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) at different annealing temperatures; d–f fractional softening ${X}_{\rm{H}}$ values as a function of annealing time ($\mathrm{log}{t}_{\mathrm{min}}$) at different annealing temperatures; g–i $\mathrm{lnln}(1/(1-{X}_{\rm{H}}))$ values as a function of annealing time ($\mathrm{ln}t$) at different annealing temperatures; j–l$\mathrm{ln}(1/{t}_{\mathrm{R}})$ values as a function of $1/T$ in cold-rolled samples I, II and III during annealing, respectively
Fig. 14 SRX growth kinetics of cold-rolled samples I, II and III after full recrystallization: a–c average grain sizes as a function of annealing time ($\mathrm{log}{t}_{s}$) at different annealing temperatures; d–f $\mathrm{ln}\left(\mathrm{d}D/\mathrm{d}t\right)$ values as a function of $\mathrm{ln}D$ at different annealing temperatures; g–i $\mathrm{ln}k$ values as a function of $1/T$ in cold-rolled samples I, II and III after full recrystallization, respectively
[1] | Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, J. Magnes, Alloys 9,705 (2021) |
[2] |
Q. Wang, B. Jiang, D. Chen, Z. Jin, L. Zhao, Q. Yang, G. Huang, F. Pan, J. Mater. Sci. 56, 12965 (2021)
DOI URL |
[3] |
X. Huang, K. Suzuki, Y. Chino, J. Alloys Compd. 724, 981 (2017)
DOI URL |
[4] |
M.H. Barezban, H. Mirzadeh, R. Roumina, R. Mahmudi, J. Alloys Compd. 791, 1200 (2019)
DOI URL |
[5] |
I. Basu, T. Al-Samman, Acta Mater. 67, 116 (2014)
DOI URL |
[6] |
M. Lotfpour, A. Bahmani, H. Mirzadeh, M. Emamy, M. Malekan, W.J. Kim, M. Taghizadeh, A. Afsharnaderi, Mater. Sci. Eng. A 820, 141574 (2021)
DOI URL |
[7] | J. Luo, H. Yan, N. Zheng, R.S. Chen, Acta Metall. Sin. -Engl. Lett. 29, 205 (2016) |
[8] |
J. Tu, T. Zhou, L. Liu, L. Shi, L. Hu, D. Song, B. Song, M. Yang, Q. Chen, F. Pan, J. Alloys Compd. 768, 598 (2018)
DOI URL |
[9] |
D. Song, T. Zhou, J. Tu, L. Shi, B. Song, L. Hu, M. Yang, Q. Chen, L. Lu, J. Mater. Process. Tech. 259, 380 (2018)
DOI URL |
[10] |
Y.B. Chun, C.H.J. Davies, Mater. Sci. Eng. A 556, 253 (2012)
DOI URL |
[11] |
S.W. Lee, S.H. Park, J. Alloys Compd. 844, 156185 (2020)
DOI URL |
[12] |
S.W. Lee, G. Han, T.S. Jun, S.H. Park, J. Mater. Sci. Technol. 66, 139 (2021)
DOI URL |
[13] |
B. Xiao, J. Song, A. Tang, B. Jiang, W. Sun, Q. Liu, H. Zhao, F. Pan, J. Mater. Process. Technol. 280, 116611 (2020)
DOI URL |
[14] |
D. Guan, W.M. Rainforth, J. Gao, L. Ma, B. Wynne, Acta Mater. 145, 399 (2018)
DOI URL |
[15] |
J. Peng, Z. Zhang, P. Guo, J. Huang, Y. Li, W. Zhou, Y. Wu, Mater. Sci. Eng. A 763, 138100 (2019)
DOI URL |
[16] |
Q. Wang, B. Jiang, A. Tang, C. He, D. Zhang, J. Song, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 746, 259 (2019)
DOI URL |
[17] |
Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, F. Pan, J. Mater. Sci. Technol. 43, 104 (2020)
DOI URL |
[18] |
D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Acta Mater. 135, 14 (2017)
DOI URL |
[19] |
J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57, 2739 (2009)
DOI URL |
[20] |
X. Zeng, P. Minárik, P. Dobroň, D. Letzig, K.U. Kainer, S. Yi, Scr. Mater. 166, 53 (2019)
DOI URL |
[21] |
W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding, J. Dong, J. Alloys Compd. 585, 111 (2014)
DOI URL |
[22] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, Mater. Sci. Eng. A 667, 233 (2016)
DOI URL |
[23] |
K. Huang, K. Marthinsen, Q. Zhao, R.E. Logé, Prog. Mater. Sci. 92, 284 (2018)
DOI URL |
[24] |
M. Sanjari, A. Farzadfar, A.S.H. Kabir, H. Utsunomiya, I.H. Jung, R. Petrov, L. Kestens, S. Yue, J. Mater. Sci. 49, 1408 (2013)
DOI URL |
[25] | K. Sheng, L.W. Lu, Y. Xiang, M. Ma, Z.C. Wang, Acta Metall. Sin. -Engl. Lett. 32, 235 (2019) |
[26] |
B.W. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci. Technol. 50, 59 (2020)
DOI URL |
[27] |
R. Pei, Y. Zou, D. Wei, T. Al-Samman, Acta Mater. 208, 116749 (2021)
DOI URL |
[28] |
M.J. Jones, F.J. Humphreys, Acta Mater. 51, 2149 (2003)
DOI URL |
[29] |
S.M. Fatemi, S. Aliyari, S.M. Miresmaeili, Mater. Sci. Eng. A 762, 138076 (2019)
DOI URL |
[30] |
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, J.F. Nie, Acta Mater. 105, 479 (2016)
DOI URL |
[31] | L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, J. Magnes, Alloys 9,818 (2021) |
[32] |
J. Su, M. Sanjari, A.S.H. Kabir, J.J. Jonas, S. Yue, Mater. Sci. Eng. A 662, 412 (2016)
DOI URL |
[33] |
H.Y. Chao, H.F. Sun, W.Z. Chen, E.D. Wang, Mater. Charact. 62, 312 (2011)
DOI URL |
[34] |
C.W. Su, L. Lu, M.O. Lai, Philos. Mag. 88, 181 (2008)
DOI URL |
[35] | Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh, Met. Mater. Int. 27, 2078 (2021) |
[36] |
J.E. Burke, D. Turnbull, Prog. Metal Phys. 3, 220 (1952)
DOI URL |
[37] |
C.J. Silva, A. Kula, R.K. Mishra, M. Niewczas, J. Alloys Compd. 687, 548 (2016)
DOI URL |
[38] | J. Hu, X. Wang, J. Zhang, J. Luo, Z. Zhang, Z. Shen, J. Materiomics 7,1007 (2021) |
[39] |
Q. Miao, L. Hu, X. Wang, E. Wang, J. Alloys Compd. 493, 87 (2010)
DOI URL |
[40] |
J.J. Bhattacharyya, S.R. Agnew, G. Muralidharan, Acta Mater. 86, 80 (2015)
DOI URL |
[41] |
M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, P. Hedström, J. Alloys Compd. 831, 154766 (2020)
DOI URL |
[42] |
G.W. Hu, L.C. Zeng, H. Du, Q. Wang, Z.T. Fan, X.W. Liu, Intermetallics 136,107271 (2021)
DOI URL |
[43] |
J.W. Cahn, Acta Metall. 10, 789 (1962)
DOI URL |
[44] |
R. Alizadeh, R. Mahmudi, A.H.W. Ngan, T.G. Langdon, J. Mater. Sci. 50, 4940 (2015)
DOI URL |
[1] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[2] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[3] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[4] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
[5] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
[6] | Cunyun Hu, Hefei Huang, Zhenbo Zhu, Awen Liu, Yan Li. Effect of Post-irradiation Annealing on Microstructure Evolution and Hardening in GH3535 Alloy Irradiated by Au Ions [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1903-1911. |
[7] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[8] | Bing Li, Ji Wu, Bugang Teng. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg-Gd-Y-Zn-Zr Sheets Through Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1051-1064. |
[9] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[10] | H.R. Lin, Y. Z. Tian, S.J. Sun, Z.F. Zhang. Microstructural Evolution and Mechanical Properties of Laminated CuAl Composites Processed by Accumulative Roll-Bonding and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 925-931. |
[11] | Jian Han, Jun Wang, Sunusi Marwana Manladan, Yangchuan Cai, Qian Wang, Zhixiong Zhu, Lisong Zhu, Lianzhong Lu, Zhengyi Jiang. Effect of Lüders Bands by Strain Ageing on Strain Distribution, Microstructure and Texture Evolution of High-Strength Pipe Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 657-667. |
[12] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[13] | Jun Wang, Hongchao Li, Haoxue Yang, Yu Zhang, William YiWang, Jinshan Li. Hot Deformation and Subsequent Annealing on the Microstructure and Hardness of an Al0.3CoCrFeNi High-entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1527-1536. |
[14] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Junwei Qiao. Texture Evolution Behavior and Its Triggered Mechanical Anisotropy of CP Ti During Severe Cold Rolling and Subsequent Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1271-1282. |
[15] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||