Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (5): 801-811.DOI: 10.1007/s40195-022-01375-w
Previous Articles Next Articles
Jinjin Yao1,2, Shengyang Pang1, Yuanhong Wang3, Chenglong Hu1, Rida Zhao1,2, Jian Li1, Sufang Tang1(), Hui-Ming Cheng1,4
Received:
2021-08-26
Revised:
2021-10-19
Accepted:
2021-10-25
Online:
2022-05-10
Published:
2022-02-03
Contact:
Sufang Tang
About author:
Sufang Tang, sftang@imr.ac.cnJinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Cross-sectional morphologies of the Cf/C-SiC composites with different C/SiC volume ratios, a CS0.10, b CS0.84, c CS3.46. The insets show the magnified images between inter-fiber regions
Specimens | Density (g·cm-3) | Porosity (%) | Open porosity (%) | SiC content (%) | Flexural strength (MPa) | Tensile strength (MPa) | Compressive strength (MPa) | Fracture toughness (MPa·m1/2) |
---|---|---|---|---|---|---|---|---|
CS0.10 | 2.00 | 23.3 | 22.6 | 43.6 | 291.6 ± 20.1 | 93.3 ± 9.8 | 247.3 ± 26.3 | 11.2 ± 2.2 |
CS0.37 | 1.98 | 21.0 | 18.5 | 36.8 | 340.6 ± 30.4 | 107.2 ± 19.5 | 247.4 ± 8.0 | - |
CS0.84 | 1.87 | 21.6 | 18.1 | 27.1 | 295.5 ± 17.2 | 139.1 ± 35.7 | 246.2 ± 13.5 | - |
CS1.60 | 1.84 | 19.7 | 15.4 | 19.9 | 262.1 ± 46.9 | 119.0 ± 13.2 | 222.2 ± 9.1 | 15.6 ± 2.5 |
CS3.46 | 1.78 | 18.7 | 14.2 | 11.8 | 283.6 ± 13.7 | 98.6 ± 23.4 | 209.4 ± 12.6 | - |
Table 1 Density, porosity, open porosity and mechanical properties of the Cf/C-SiC composites with different C/SiC volume ratios
Specimens | Density (g·cm-3) | Porosity (%) | Open porosity (%) | SiC content (%) | Flexural strength (MPa) | Tensile strength (MPa) | Compressive strength (MPa) | Fracture toughness (MPa·m1/2) |
---|---|---|---|---|---|---|---|---|
CS0.10 | 2.00 | 23.3 | 22.6 | 43.6 | 291.6 ± 20.1 | 93.3 ± 9.8 | 247.3 ± 26.3 | 11.2 ± 2.2 |
CS0.37 | 1.98 | 21.0 | 18.5 | 36.8 | 340.6 ± 30.4 | 107.2 ± 19.5 | 247.4 ± 8.0 | - |
CS0.84 | 1.87 | 21.6 | 18.1 | 27.1 | 295.5 ± 17.2 | 139.1 ± 35.7 | 246.2 ± 13.5 | - |
CS1.60 | 1.84 | 19.7 | 15.4 | 19.9 | 262.1 ± 46.9 | 119.0 ± 13.2 | 222.2 ± 9.1 | 15.6 ± 2.5 |
CS3.46 | 1.78 | 18.7 | 14.2 | 11.8 | 283.6 ± 13.7 | 98.6 ± 23.4 | 209.4 ± 12.6 | - |
Fig. 3 Fracture morphologies of the Cf/C-SiC composites with different C/SiC volume ratios and their magnification images: a CS0.10, b CS0.37, c CS3.46
Fig. 9 Cross-sectional morphologies of the Cf/C-SiC composites after 1500 s oxidation at 1100 °C and 1400 °C: a CS0.10-1100 °C, b CS0.10-1400 °C, c CS0.84-1400 °C, d CS3.46-1400 °C
[1] |
A.G. Odeshi, H. Mucha, B. Wielage, Carbon 44, 1994 (2006)
DOI URL |
[2] |
CAS M. Patel, K. Saurabh, V.V.B. Prasad, J. Subrahmanyam, Bull. Mater. Sci. 35, 63 (2012)
DOI URL |
[3] |
F. Lamouroux, X. Bourrat, R. Naslain, J. Thebault, Carbon 33, 525 (1995)
DOI URL |
[4] | CAS H.J. Seifert, S. Wagner, O. Fabrichnaya, H.L. Lukas, F. Aldinger, T. Ullmann, M. Schmücker, H. Schneider, J. Amer. Chem. Soc. 88, 424 (2005) |
[5] |
CAS W. Krenkel, F. Berndt, Mater. Sci. Eng. A 412, 177 (2005)
DOI URL |
[6] | H. Hald, H. Weihs, T. Reimer, T. Ullmann, Development of hot CMC structures for space reentry vehicles via flight experiments, In: AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Y 14-17 July 2003, Dayton, Ohio, AIAA 2003-2696. |
[7] |
F. Christin Adv. Eng. Mater. 4, 903 (2002)
DOI URL |
[8] |
CAS H.Q. Ly, R. Taylor, R.J. Day, J. Mater. Sci. 36, 4027 (2001)
DOI URL |
[9] |
CAS S. Kumar, M. Bablu, A. Ranjan, L.M. Manocha, N.E. Prasad, Ceram. Int. 43, 3414 (2017)
DOI URL |
[10] |
CAS J.P. Wang, M. Lin, Z. Xu, Y.H. Zhang, Z.Q. Shi, J.M. Qian, G.J. Qiao, Z.H. Jin, J. Eur. Ceram. Soc. 29, 3091 (2009)
DOI URL |
[11] |
CAS J. Schulte-Fischedick, A. Zern, J. Mayer, M. Rühle, M. Frieß, W. Krenkel, R. Kochendörfer, Mater. Sci. Eng. A 332, 146 (2002)
DOI URL |
[12] |
Y. Li, P. Xiao, Z. Li, W. Zhou, T. Liensdorf, W. Freudenberg, F. Reichert, N. Langhof, W. Krenkel, Ceram. Int. 42, 14505 (2016)
DOI URL |
[13] |
CAS H. Araki, T. Noda, H. Suzuki, F. Abe, M. Okada, J. Nucl. Sci. Technol. 32, 369 (1995)
DOI URL |
[14] | CAS C.L. Hu, W.H. Hong, X.J. Xu, S.F. Tang, S.Y. Du, Hui-Ming Cheng. Sci. Rep. 7, 13120 (2017) |
[15] |
J.F. Despres, M. Monthioux, J. Eur. Ceram. Soc. 15, 209 (1995)
DOI URL |
[16] | CAS K. An, R.Y. Luo, Carbon Tech. 36, 30 (2017) |
[17] |
S. Krishnan, V. Vijay, S. Siva, A. Painuly, N. Naithani, R. Devasia, Int. J. Appl. Ceram. Technol. 15, 1110 (2018)
DOI URL |
[18] |
CAS H. Mei, L.F. Cheng, Carbon 47, 1034 (2009)
DOI URL |
[19] | CAS J.P. Wang, J.Y. Lou, Z. Xu, Z.H. Jin, Eco-Mater. Process. Des. XI 658, 133 (2010) |
[20] |
CAS Y.H. Zhang, Z.C. Xiao, J.P. Wang, J.F. Yang, Z.H. Jin, Mater. Sci. Eng. A 502, 64 (2009)
DOI URL |
[21] | L.L. Wang, W.M. Ma, A.L. Ji, H. Cui, L.S. Yan, J. Huang, J. Mater. Eng. 7, 34 (2014) |
[22] | N. An, C.J. Li, A.L. Ji, Carbon Tech. 34, 27 (2015) |
[23] |
CAS D.L. Zhao, T. Guo, X.M. Fan, C. Chen, Y. Ma, J. Adv. Ceram. 10, 219 (2021)
DOI URL |
[24] |
CAS L.T. Zhang, L.F. Cheng, X.G. Luan, N. Dong, Key Eng. Mater. 249, 9 (2003)
DOI URL |
[25] | CAS N. Dong, Y.D. Xu, L.F. Cheng, L.T. Zhang, J. Mater. Sci. Technol. 19, 77 (2003) |
[26] |
H. Mei, Q.L. Bai, Y.Y. Sun, H.Q. Li, H.Q. Wang, L.F. Cheng, Carbon 57, 288 (2013)
DOI URL |
[27] | CAS W.J. Xie, Z.Y. Peng, D.L. Yang, J.L. Liu, W.X. Gu, C. Xu, Y.S. Ye, R.Y. Luo, Carbon Tech. 33, 21 (2014) |
[28] | CAS X.Y. Yao, W. Li, G.H. Feng, IOP Conference Series Materials Science and Engineering 733, 012012 (2020) |
[29] |
Z. Li, P. Xiao, X. Xiong, B.Y. Huang, New Carbon Mater. 25, 225 (2010)
DOI URL |
[30] |
CAS J.J. Yao, S.Y. Pang, C.L. Hu, J. Li, S.F. Tang, H.M. Cheng, Corros. Sci. 162, 108200 (2020)
DOI URL |
[31] |
CAS J.X. Zhang, Y.S. Liu, L.F. Cheng, H. Zhao, J. Wang, Y. Zhang, Z.B. He, B.X. Zhang, L.T. Zhang, J. Eur. Ceram. Soc. 39, 4609 (2019)
DOI URL |
[32] |
CAS Y.D. Xu L.T. Zhang L.F. Cheng, D.T. Yan, Carbon 36, 1051 (1998)
DOI URL |
[33] |
CAS F. Lamouroux, X. Bourrat, R. Nasalain, J. Sevely, Carbon 31, 1273 (1993)
DOI URL |
[34] |
CAS T. Li, D. Fan, L. Lu, J.Y. Huang, J.C. E, F. Zhao, M.L. Qi, T. Sun, K. Fezzaa, X.H. Xiao, X.M. Zhou, T. Suo, W. Chen, Y.L. Li, M.H. Zhu, S.N. Luo, Carbon 91, 468 (2015)
DOI URL |
[35] | CAS C.R. Zhang, Y.K. Hao, Ceramic Matrix Composites (National University of Defense Technology Press, Changsha, 2001), p. 231 |
[36] |
E.A. Kellett, B.P. Richards, J. Nucl. Mater. 12, 184 (1964)
DOI URL |
[37] |
CAS X.Y. Cao, X.W. Yin, X.M. Fan, L.F. Cheng, L.T. Zhang, Carbon 77, 886 (2014)
DOI URL |
[38] |
CAS C. Sauder, A. Brusson, J. Lamon, Int. J. Appl. Ceram. Technol. 7, 291 (2010)
DOI URL |
[39] |
CAS C.H. Hsueh, F. Rebillat, J. Lamon, E.L. Curzio, Compos. Eng. 5, 1387 (1995)
DOI URL |
[40] | CAS E. Fitzer, E. Heym, High Temp. -High Press. 10, 29 (1978) |
[41] | CAS S.K. Mital, P.L. Murthy, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle (The American Institute of Aeronautics and Astronautics Inc, Washington, 2001) |
[42] |
J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, F. Echeverría, Corros. Sci. 52, 216 (2010)
DOI URL |
[43] |
L. Hao, S.X. Zhang, J.H. Dong, W. Ke, Corros. Sci. 58, 175 (2012)
DOI URL |
[1] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[2] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[3] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[4] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[5] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[6] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[7] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
[8] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[9] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[10] | Xiaodong Wang, Chaoyue Chen, Ruixin Zhao, Longtao Liu, Sansan Shuai, Tao Hu, Jiang Wang, Zhongming Ren. Selective Laser Melting of Carbon-Free Mar-M509 Co-Based Superalloy: Microstructure, Micro-Cracks, and Mechanical Anisotropy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 501-516. |
[11] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[12] | Jing Wang, Wei Li, Xiaodong Zhu, Li You, Laiqi Zhang. Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 341-352. |
[13] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[14] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[15] | Guoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||