Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (6): 719-725.DOI: 10.1007/s40195-018-0830-5
• Orginal Article • Previous Articles Next Articles
Sandip Sabale1,2(), Vidhya Jadhav2, Shubhangi Mane-Gavade2, Xiao-Ying Yu1(
)
Received:
2018-05-15
Revised:
2018-07-27
Online:
2019-06-10
Published:
2019-06-17
Supported by:
Sandip Sabale, Vidhya Jadhav, Shubhangi Mane-Gavade, Xiao-Ying Yu. Superparamagnetic CoFe2O4@Au with High Specific Absorption Rate and Intrinsic Loss Power for Magnetic Fluid Hyperthermia Applications[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 719-725.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Structural, optical and magnetic properties of CoFe2O4NPs (red) and CoFe2O4@Au CSs (blue) NPs. X-ray diffraction pattern a (filled blue circles and red square showing the representative peaks for Au and CoFe2O4 in core-shell pattern); infrared absorption spectra b; Raman spectra showing the Raman active bands excited at 488 nm c; room temperature M-H curves d (the inset shows the CoFe2O4@Au CSs suspension before a, after b an external magnetic field)
Sample | DXRD (nm) | DTEM (nm) | MS (emu g-1) | HC (Oe) | Composition (wt%) | IS (mm s-1) | Hf (mm s-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Co | Au | |||||||
CoFe2O4 | 4.8?±?0.83 | 4.50?±?0.5 | 42.59 | 7.65 | 21.87 | 50.75 | 27.37 | - | 0.373?±?0.041 | 31.6?±?1.40 |
CoFe2O4@Au | 5.9?±?0.35 | 5.10?±?0.5 | 33.02 | 0.0 | 21.18 | 41.77 | 22.74 | 14.31 | 0.328?±?0.028 | 26.6?±?1.10 |
Table 1 Summary of the crystallite size from XRD (DXRD), TEM diameter (DTEM), saturation magnetization (MS), coercivity (HC), composition from EDS analysis, average isomer shift (IS) and internal hyperfine field (Hf) from Mossbauer analysis of obtained MNPs
Sample | DXRD (nm) | DTEM (nm) | MS (emu g-1) | HC (Oe) | Composition (wt%) | IS (mm s-1) | Hf (mm s-1) | |||
---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Co | Au | |||||||
CoFe2O4 | 4.8?±?0.83 | 4.50?±?0.5 | 42.59 | 7.65 | 21.87 | 50.75 | 27.37 | - | 0.373?±?0.041 | 31.6?±?1.40 |
CoFe2O4@Au | 5.9?±?0.35 | 5.10?±?0.5 | 33.02 | 0.0 | 21.18 | 41.77 | 22.74 | 14.31 | 0.328?±?0.028 | 26.6?±?1.10 |
Fig. 2 Mossbauer spectra recorded at room temperature of CoFe2O4 NPs a and CoFe2O4@Au CSs b, (sphere points showing the recorded data points and the gray area showing the distribution of hyperfine field fit using NORMOS/DIST program); representative HRTEM micrographs of CoFe2O4NPs c, d, CoFe2O4@Au CSs e, f
Fig. 3 Temperature-time curves of a 5 mg mL-1; b 10 mg mL-1 CoFe2O4 MNPs; c 5 mg mL-1; d 10 mg mL-1 CoFe2O4@Au CS at different applied AC magnetic fields (dotted line showing the threshold hyperthermia temperature at respective time in s)
Applied field (H)?→? | 13.3 (kA m-1) | 20.0 (kA m-1) | 26.7 (kA m-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Conc. (mg mL) | ΔT | SAR | ILP | ΔT | SAR | ILP | ΔT | SAR | ILP |
CoFe2O4 | 5 | 12.16 | 32.81 | 0.67 | 20.88 | 54.26 | 0.49 | 25.89 | 68.85 | 0.35 |
10 | 14.83 | 17.89 | 0.37 | 26.65 | 38.82 | 0.35 | 35.43 | 53.76 | 0.27 | |
CoFe2O4@Au | 5 | 14.88 | 33.38 | 0.68 | 20.08 | 40.32 | 0.37 | 27.94 | 54.97 | 0.28 |
10 | 21.00 | 16.91 | 0.35 | 26.47 | 21.21 | 0.19 | 31.10 | 26.64 | 0.14 |
Table 2 Calculated rise in temperature (ΔT, °C), specific absorption rate (SAR, W g-1) and intrinsic loss power (ILP, nHm2 kg-1) of CoFe2O4 NPs and CoFe2O4@Au CSs NPs
Applied field (H)?→? | 13.3 (kA m-1) | 20.0 (kA m-1) | 26.7 (kA m-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Conc. (mg mL) | ΔT | SAR | ILP | ΔT | SAR | ILP | ΔT | SAR | ILP |
CoFe2O4 | 5 | 12.16 | 32.81 | 0.67 | 20.88 | 54.26 | 0.49 | 25.89 | 68.85 | 0.35 |
10 | 14.83 | 17.89 | 0.37 | 26.65 | 38.82 | 0.35 | 35.43 | 53.76 | 0.27 | |
CoFe2O4@Au | 5 | 14.88 | 33.38 | 0.68 | 20.08 | 40.32 | 0.37 | 27.94 | 54.97 | 0.28 |
10 | 21.00 | 16.91 | 0.35 | 26.47 | 21.21 | 0.19 | 31.10 | 26.64 | 0.14 |
|
[1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[2] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[3] | Tao Liu, Yuejiao Chen, Libao Chen. 3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 85-97. |
[4] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[5] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[6] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[7] | Shikai Wu, Wei Gao, Tao Lu, Ye Pan. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110. |
[8] | Lujun Zhou, Shanwu Yang, Yi Dong, Wenhua Zhang, Jianwen Ding, Guoliang Liu, Chengjia Shang, Raja Devesh Kumar Misra. Characterization of Compactness of Rust Layers on Weathering Steels by an Adsorption/Dehydration Test of Ethanol [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 846-856. |
[9] | Ming He, Xian-Liang Li, Qing-Wei Wang, Qiang Wang, Zhi-Yuan Liu, Chong-Jun Wang. Influence Factors Analysis of Fe-C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 671-678. |
[10] | Jiahao Wang, Lin Xu, Ruizhi Wu, Jing Feng, Jinghuai Zhang, Legan Hou, Milin Zhang. Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg-9Li-3Al-1Zn Alloy Processed by Accumulative Roll Bonding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 490-499. |
[11] | Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350. |
[12] | Bing Li, Bugang Teng, Baoting Zhang. Integrated Extrusion-Shear Forming Process of the Solid-State Recycled AZ80 Magnesium Alloy via Hot Press Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 351-361. |
[13] | Hao-Yi Niu, Fang-Fang Cao, Kun-Kun Deng, Kai-Bo Nie, Jin-Wen Kang, Hong-Wei Wang. Microstructure and Corrosion Behavior of the As-Extruded Mg-4Zn-2Gd-0.5Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 362-374. |
[14] | Le Zhang, Wei Wang, fei Xiao, Shahzad M. Babar, Yiyin Shan, Ke Yang. Ultra-thin Laminated Metal Composites with Ultra-high Strength and Excellent Soft Magnetic Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 385-390. |
[15] | Yan Dai, Xian-Hua Chen, Tao Yan, Ai-Tao Tang, Di Zhao, Zhu Luo, Chun-Quan Liu, Ren-Ju Cheng, Fu-Sheng Pan. Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||